Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ủa, \(\frac{20}{\frac{21}{4}}\)t bấm máy tính đâu ra \(\frac{5}{21}\)đâu nhở?
\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{17\cdot21}< 1\)
\(A=\dfrac{4}{4}\cdot\left(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{17\cdot21}\right)< 1\)
\(A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}< 1\)
\(A=1-\dfrac{1}{21}< 1\) (đúng) (đpcm).
a. \(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+......+\dfrac{3}{17.20}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+......+\dfrac{1}{17}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)
b. \(B=\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{4}-\dfrac{1}{10}\)
\(=\dfrac{3}{20}\)
c. \(C=\dfrac{4^2}{1.5}+\dfrac{4^2}{5.9}+......+\dfrac{4^2}{45.49}\)
\(=4\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+....+\dfrac{4}{45.49}\right)\)
\(=4\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+.....+\dfrac{1}{45}-\dfrac{1}{49}\right)\)
\(=4\left(1-\dfrac{1}{49}\right)\)
\(=4.\dfrac{48}{49}\)
\(=\dfrac{192}{49}\)
Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)
\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(A=\frac{1}{1}-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(\frac{20}{21}< 1\)
=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm )
* Mình sợ sai xD *
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(B=\frac{5}{10.11}+\frac{5}{11.12}+\frac{5}{12.13}+...+\frac{5}{19.20}\)
\(B=5.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{19.20}\right)\)
\(B=5.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(B=5.\left(\frac{1}{10}-\frac{1}{20}\right)\)
\(B=5.\frac{1}{20}=\frac{1}{4}\)
\(C=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\)
\(4C=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(4C=\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\)
\(4C=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\)
\(4C=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)
\(C=\frac{4}{25}:4=\frac{1}{25}\)