K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

vì n là số lẻ nên ta đặt n = 2a+1 (với a E N)

n3-n = (2a+1)3-(2a+1) = 8a3+12a2+ 6a+1-2a-1 = 8a3+12a2+4a = 2a (4a2+6a +2) = 4a(a+1)(2a+1) = 2a.(2a+1).(2a+2)

Vì n3-n = 4a(a+1)(2a+1) chia hết cho 4.   

 +) Nếu a chẵn thì a chia hết cho 2 => n3-n = 4a(a+1)(2a+1)  chia hết cho 2.4 =  8

+) Nếu a lẻ thì a+1 chẵn chia hết cho 2 => n3-n = 4a(a+1)(2a+1)  chia hết cho 2.4 =  8

Vậy n3-n = 4a(a+1)(2a+1) chia hết cho 8   

mặt khác n3-n  = 2a.(2a+1).(2a+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3

Vậy n3-n  chia hết cho 3.8 = 24 (vì 3 và 8 là 2 số nguyên tố cùng nhau )

Lưu ý: nếu A chia hết cho 2, chia hết cho 4 , chia hết cho 3 mà kết luận A chia hết cho 2.3.4 = 24 là sai vì 2, 4 không phải là 2 số nguyên tố cùng nhau. ví dụ 12 chia hết cho 2; 3; 4 nhưng không chia hết cho 24 nhé)

                                                  

22 tháng 12 2017

n3 - n = n ( n - 1 ) ( n + 1 )

n ( n - 1 ) là tích của 2 số tự nhiên liên tiếp chia hết cho 2 

Vì n lẻ => n - 1 ; n + 1 là tích số chẵn chia hết cho 4

=> n ( n - 1 ) ( n + 1 ) chia hết cho 4

3 số tự nhiên liên tiếp có 1 số chia hết cho 3 

=> n ( n - 1 ) ( n + 1 ) chia hết cho 3 

=> n ( n - 1 ) ( n + 1 ) chia hết cho 2 . 3 . 4 = 24 

=> n3 - n chia hết cho 24 ( đpcm ) .

26 tháng 1 2018

\(x^4+6x^3+11x^2+6x\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

\(x\in Z\Rightarrow x;x+1;x+2;x+3\) là 4 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích 4 số nguyên liên tiếp

Suy ra \(\hept{\begin{cases}\text{có tích 2 số chẵn liên tiếp }\Rightarrow⋮8\\\text{có một số chia hết 3}\\\left(8;3\right)=1\end{cases}}\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)⋮24\)

8 tháng 6 2020

a, Vì a,b là các số nguyên lẻ không chia hết cho 3

=> \(\left\{{}\begin{matrix}a^2\equiv1\left(mod3\right)\\b^2\equiv1\left(mod3\right)\end{matrix}\right.\)\(\Rightarrow a^2-b^2⋮3\)

Tương tự với 8

b,\(x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2+x^2y^2-2x^2y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+x^2\left(1+y^2-2y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+x^2\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=y\\x\left(y-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)

8 tháng 6 2020

à loại TH x=y=0 đi vì nguyên dương nhé

CMR với mọi số nguyên a, b, c, d tích

(a−b)(a−c)(a−d)(b−c)(b−d)(c−d)(a−b)(a−c)(a−d)(b−c)(b−d)(c−d) chia hết cho 12.

CMR có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

CMR tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số 0, 1, 2, 3.

CMR tồn tại số tự nhiên k sao cho 2003-1 chia hết cho 51 .

đúng không bạn