Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
Đặt A (n) = 33n+3 - 26n - 27
A(1) = 676 chia hết cho 169
Giả sử A(n) chia hết cho 169 . Ta cần chứng minh A (n +1) chia hết cho 169
Xét hiệu A(n +1) - A (n) = 33n+6 - 26(n +1) - 27 - 33n+3 + 26n + 27 = 33n+3. (33 - 1) - 26 = 26. (33n+3 - 1)
Đặt B (n) = 33n+3 - 1. Ta chứng minh B(n) chia hết cho 13
Có B(1) chia hết cho 13
Giả sử B(n) chia hết cho 13
Xét hiệu B(n+1) - B(n) = 33n+6 - 1 - 33n+3 + 1 = 33n+3. (33 - 1) = 26.33n+3 chia hết cho 13 (do 26 chia hết cho 13)
⇒ B (n + 1) chia hết 13
Vậy B(n) chia hết cho 13
⇒ A(n +1) - A (n) = 2.13.13. k = 169.k
⇒ A(n +1) - A (n) chia hết cho 169 mà A (n) chia hết cho 169
⇒ A (n+1) chia hết cho 169 (đpcm)
Ta có : \(\frac{3n^3+10n^2-5}{3n+1}=n^2+3n-\frac{6}{3n+1}\)
Để \(3n^3+10n^2-5⋮3n+1\) \(\Leftrightarrow6⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n=\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
\(\Rightarrow n=\left\{-\frac{7}{3};-\frac{4}{3};-1;-\frac{2}{3};0;\frac{1}{3};\frac{2}{3};\frac{5}{3}\right\}\)
Mà n là số nguyên nên \(n=\left\{-1;0\right\}\)
Bạn xem lại đề xem chứ mình thay \(n=3,4,5,6\) đều không thỏa.
Die Devil: kiểm tra kĩ đề bài trước khi phán xét vớ vẩn đi nhé
(*)Đề này hoàn toàn sai : Nếu lấy ngay n=0 hoặc n=1 thì hiệu trên không chia hết cho 59
P/s : đề này có thể dùng phương pháp quy nạp toán học để CM
A=33n+3-26n-27
=33(n+1)-26n-27
=27n+1-1-26n-26
=(27-1)(27n+27n-1+...+1)-13(2n+2)
=>A/13=2(27n+27n-1+...+1)-2n-2
27 đồng dư với 1(mod 27)
=>2(27n+27n-1+...+1) đồng dư với 2n+2(mod 13)
=>A/13 đồng dư với 2n+2-2n-2=0(mod 13)
=>A/13 chia hết cho 13
=>A chia hết cho 169
=>đpcm
ths ông, tui chưa hk đồng dư nha !!!@-@