K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Trần Văn Nghiệp

nếu p1(mod3)p≡1(mod3) hoặc p2(mod3)p≡2(mod3) thì

p2+83p2+8⋮3không phải số nguyên tố 

suy ra p=3p=3

p2+2=11p2+2=11(là số nguyên tố)

13 tháng 6 2017

nếu p≡1(mod3) hoặc p≡2(mod3)

thì \(p^2+8⋮3\)(không phải số nguyên tố)

suy ra p=3

\(p^2+2=11\) (là số nguyên tố)

31 tháng 5 2018

hóng bài giải câu 1 quá

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
13 tháng 7 2016

ta có:

\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\) 

=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3

2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)

=> n+2 chia hết cho 3

=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.

Ta thấy

- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2

- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p

Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2

=> p^2 không chia hết cho 2 nên p không chia hết cho 2

=> p^3 không chia hết cho 2

Vậy p^3 +2 là số nguyên tố

1 tháng 12 2018

mời tham khảo link

 https://olm.vn/hoi-dap/detail/6389684139.html

4 tháng 10 2019

Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath