Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Văn Nghiệp
nếu p≡1(mod3)p≡1(mod3) hoặc p≡2(mod3)p≡2(mod3) thì
p2+8⋮3p2+8⋮3không phải số nguyên tố
suy ra p=3p=3
p2+2=11p2+2=11(là số nguyên tố)
ta có:
\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\)
=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3
2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)
=> n+2 chia hết cho 3
=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.
Ta thấy
- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2
- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p
Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2
=> p^2 không chia hết cho 2 nên p không chia hết cho 2
=> p^3 không chia hết cho 2
Vậy p^3 +2 là số nguyên tố
mời tham khảo link
https://olm.vn/hoi-dap/detail/6389684139.html
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath