Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4^n-1\right)⋮\left(4-1\right)=3\)
Đặt \(4^n=3m+1\left(m\in N\right)\)
\(\Rightarrow2^{2n}\left(2^{2n+1}-1\right)-1=4^n\left(2.4^n-1\right)\\ =\left(3m+1\right)\left[2\left(3m+1\right)-1\right]-1\\ =\left(3m+1\right)\left(6m+1\right)-1\\ =18m^2+3m+6m+1-1\\ =9\left(2m^2+m\right)⋮9\)
M = [(n+1)^2+4]^2-(n+1)2+2012
Đặt (n+1)^2 = a ( a >= 0 )
Khi đó :
M = (a+4)^2-a+2012
= a^2+8a+16-a+2012
= a^2+7a+2028
= a^2+a+6a+2028
Xét : a^2+a = (n^2+2n+1)^2-(n^2+2n+1) = (n^2+2n+1).(n^2+2n) = n.(n+1)^2.(n+2)
Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
=> a^2+a chia hết cho 6
Mà 6a và 2028 đều chia hết cho 6
=> M chia hết cho 6
Tk mk nha
8 phút trước (09:39)
Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?
BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋
TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!
Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
với mọi n \(\in\)N* , bằng phương pháp quy nạp
Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có :
\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)
Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
=> Từ giả thiết quy nạp ta có :
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)
\(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)
\(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)
\(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*
Ta có: \(\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{16}=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
................
\(\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)
⇒\(\dfrac{1}{9}+\dfrac{1}{16}+......+\dfrac{1}{\left(2n+1\right)^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{2n.\left(2n+1\right)}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{2n}-\dfrac{1}{2n+1}\)
= \(\dfrac{1}{2}-\dfrac{1}{2n+1}\)
= \(\dfrac{2n+1-2}{2n+1}\)
= \(\dfrac{2n-1}{2n+1}\)= \(1-\dfrac{2}{2n+1}\)
Ta có: n ≥ 1⇒ 2n+1 ≥ 3
⇒ \(1-\dfrac{2}{2n+1}\) ≤ \(\dfrac{1}{3}\)
hình như đề sai thì phải
Câu hỏi của le hoang minh khoi - Toán lớp 9 - Học toán với OnlineMath