Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
Có : S = (2017+2017^2)+(2017^3+2017^4)+.....+(2017^9+2017^10)
= 2017.(1+2017)+2017^3.(1+2017)+......+2017^9.(1+2017)
= 2017.2018+2017^3.2018+......+2017^9.2018
= 2018.(2017+2017^3+....+2017^9) chia hết cho 2018
Tk mk nha
Dãy số trên có 10 số hạng chia thành 5 nhóm mỗi nhóm có 2 số hạng
Ta có:
S=(2017+2017^2)+(2017^3+2017^4)+..........+(2017^9+2017^10)
S=(2017.1+2017.2017)+.........+(2017^9.1+2017^9.2017)
S=2017.(2017+1)+.....+2017^9.(2017+1)
S=2017.2018+......+2017^9.2018
S=2018.(2017+.....+2017^9)
=>S chia hết chp 2018
k cho tớ nha!!!!!
Cho A = 1^1 + 2^5 + 3^9 + 4^13 + ... + 504^2013 + 505^2017. Chứng minh A chia hết cho 5. Giúp mk với
Ta có :
\(A=1+2^5+4^{13}+.....+504^{2013}+505^{2017}\)
\(A=1^{4.0+1}+2^{4.1+1}+3^{4.2+1}+....+505^{4503+1}+505^{4504+1}\)
Gọi các số nhân lên cùng 4 ở hàng số mũ là x
Xét các mũ ,ta có :
Chữ số tận cùng A sẽ là tổng của :
\(1+2+3+...+504+505\)
\(=\dfrac{\left(505+1\right).505}{2}=\dfrac{255530}{2}=127765\)
Tổng đó có chữ số tận cùng là 5
⇒⇒ Chữ số tận cùng của A là 5
Vậy chữ số tận cùng của A là 5
Ta có
\(2017^{2017}=\left(2017^{2016}\right).2017=\left(...1\right).2017=\left(...7\right)\)
\(2013^{2013}=\left(2013^{2012}\right).2013=\left(...1\right).2013=\left(...3\right)\)
\(\Rightarrow2013^{2013}+2017^{2017}=\left(...3\right)+\left(...7\right)=\left(...0\right)⋮10\)
\(2013^{2013}+2017^{2017}\)
Ta có:
\(2013^{2013}=\left(2013^{2012}\right).2013=\overline{...1}.2013=\overline{...3}\)
\(2017^{2017}=\left(2017^{2016}\right).2017=\overline{...1}.2017=\overline{...3}\)
\(\Rightarrow2013^{2013}+2017^{2017}=\overline{...3}+\overline{...7}=\overline{...0}⋮10\)
\(\Rightarrow2013^{2013}+2017^{2017}⋮10\)