K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(2005^{2007}+2007^{2005}\)

\(=\left(2005^{2017}+1^{2017}\right)+\left(2007^{2005}-1^{2005}\right)\)

Vì \(2005^{2007}+1^{2007}⋮2005+1=2006;2007^{2005}-1^{2005}⋮2007-1=2006\)

\(\Rightarrow\)\(\left(2005^{2007}+1^{2007}\right)+\left(2007^{2005}-1^{2005}\right)⋮2016\)

\(\Rightarrow\)\(2005^{2007}+2007^{2005}⋮2006\)( đpcm ) 

4 tháng 10 2019

Ta có: \(2005\equiv-1\left(mod2006\right)\)

\(\Rightarrow2005^{2007}\equiv-1\left(mod2006\right)\)

Lại có: \(2007=1\left(mod2006\right)\)

\(\Rightarrow2007^{2005}\equiv1\left(mod2006\right)\)

\(\Rightarrow2005^{2007}+2007^{2005}\equiv0\left(mod2006\right)\)

Vậy \(2005^{2007}+2007^{2005}⋮2006\left(đpcm\right)\)

4 tháng 10 2019

mod là gì

1 tháng 8 2016

Ta có:

20052007 + 20072005

= (20052007 + 12007) + (20072005 - 12005)

Vì 20052007 + 12007 luôn chia hết cho 2005 + 1 = 2006; 20072005 - 12005 luôn chia hết cho 2007 - 1 = 2006

=> (20052007 + 12007) + (20072005 - 12005) chia hết cho 2006

=> 20052007 + 20072005 chia hết cho 2006 (đpcm)

Xog

27 tháng 7 2016

Ta có:

20052007 + 20072005

= (20052007 + 12007) + (20072005 - 12005)

Vì 20052007 + 12007 luôn chia hết cho 2005 + 1 = 2006; 20072005 - 12005 luôn chia hết cho 2007 - 1 = 2006

=> (20052007 + 12007) + (20072005 - 12005) chia hết cho 2006

=> 20052007 + 20072005 chia hết cho 2006 (đpcm)

30 tháng 12 2017

Sửa đề\(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)

Đặt \(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)

Ta có:

\(A=2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=\left(2005-1\right)\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=2005\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=\left(2005^{2007}+2005^{2006}+2005^{2005}+...+2005^2+2005\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)

\(=2005^{2007}⋮2005^{2007}\left(dpcm\right)\)

8 tháng 7 2018

Ta có: 20052007 + 20072005 = (20052007 + 12007 ) + (20072005 - 12005 )

Vì \(2005^{2007}+1^{2007}\)luôn chia hết cho \(2005+1=2006\left(1\right)\)

    \(2007^{2005}-1^{2005}\)luôn chia hết cho \(2007-1=2006\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(2005^{2007}+1^{2007}\right)+\left(2007^{2005}-1^{2005}\right)⋮2006\)

                 \(\Rightarrow2005^{2007}+2007^{2005}⋮2006\)

Vậy \(2005^{2007}+2007^{2005}⋮2006\)