Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> A= \(\frac{\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}\right).23.7.1009}{\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right).23.7.1009}\) + \(\frac{1}{30.1009-160}\)
=> A= \(\frac{7.1009+23.1009-23.7}{7.1009+23.1009-23.7+1}\) + \(\frac{1}{7.1009+23.1009-23.7+1}\) = \(\frac{7.1009+23.1009-23.7+1}{7.1009+23.1009-23.7+1}\) = 1.
\(\frac{24\cdot47-23}{24+47\cdot23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
\(=\frac{24\cdot\left(24+23\right)-23}{24+\left(24+23\right)\cdot23}\cdot\frac{3\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}\)
\(=\frac{24^2+24\cdot23-23}{24+24\cdot23+23^2}\cdot\frac{3}{9}\) \(=\frac{24^2+23\cdot\left(24-1\right)}{\left(23+1\right)\cdot24\cdot23^2}\cdot\frac{1}{3}=1\cdot\frac{1}{3}=\frac{1}{3}\)
2x-\(\frac{1}{3}\)=1-\(\frac{5}{6}\)
2x-\(\frac{1}{3}\)=\(\frac{1}{6}\)
2x=\(\frac{1}{6}\)+\(\frac{1}{3}\)
2x=1/6 +2/6
2x=\(\frac{1}{2}\)
x=1/2 : 2
x/\(\frac{1}{4}\)
\(\frac{7}{9}\):(2+\(\frac{3}{4}\)x)+\(\frac{5}{9}\)=\(\frac{23}{27}\)
7/9 :(2+3/4x)=\(\frac{23}{27}\)-\(\frac{5}{9}\)
7/9 :(2+3/4x)=\(\frac{23}{27}\)-\(\frac{15}{27}\)
7/9 :(2+3/4x)=\(\frac{8}{27}\)
(2+3/4x) =\(\frac{7}{9}\) . \(\frac{27}{8}\)
(2+3/4x) =\(\frac{21}{8}\)
\(\frac{3}{4}\)x =\(\frac{21}{8}\)-2
3/4x =21/8 -16/8
3/4x = 5/8
x =\(\frac{5}{8}\) : \(\frac{3}{4}\)
x =5/8 . 4/3
x =\(\frac{20}{24}\)
= 1135/23 - ( 167/32 - 330/23 )
= 1135/23 - (-6719/736)
= 43039/736
Đặt biểu thức trên là *
Với n=1 thì => * <=> 13=\(\frac{1^2\left(1+1\right)^2}{4}\left(đúng\right)\)
Giả sử * đúng vói n=k => * <=> 13+...+k3=\(\frac{k^2\left(k+1\right)^2}{4}\)
Cần c/m * cũng đúng với n=k+1
Thật vậy với n=k+1
=> * <=> 13 + ... + k3 + ( k + 1 )3=\(\frac{\left(k+1\right)^2.\left(k+2\right)^2}{4}\)
<=> \(\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k+1\right)^{2.}.\left(k+2\right)^2}{4}\Leftrightarrow\frac{k^2}{4}+k+1=\frac{\left(k+2\right)^2}{4}\)
<=> \(\frac{\left(k+2\right)^2}{4}=\frac{\left(k+2\right)^2}{4}\)
=> * đúng với n=k+1
Vậy * đúng với mọi số tự nhiên nϵN
Sáng Ngọc quy nạp ak bạn!!