K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

Mi hả Đức ta Gia Huy nè !

22 tháng 5 2021

\(\Leftrightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)=\frac{1}{100}+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow x-\frac{98}{99}=\frac{1}{99}\Leftrightarrow x=1\)

27 tháng 6 2016

\(VT=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{97!}-\frac{1}{99!}+\frac{1}{98!}-\frac{1}{100!}\)

\(VT=2-\frac{1}{100!}< 2\)đpcm

Ta xét vế trái nha 

\(VT=\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+.....+\frac{99.100-1}{100}\)

\(=1-\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}......+\frac{1}{98}-\frac{1}{100}\)

\(=2-\frac{1}{100}\)

\(=>VT< VP\)

31 tháng 12 2015

Câu 1

x-(-25-17-x)=6+x

<=>x+25+17+x=6+x

<=>2x-x=6-25-17

<=>x=-36

Tick rùi mình làm 2 câu còn lại cho

Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

21 tháng 4 2015

1/1.2+1/2.3+1/3.4+....+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100

=1/1-1/100

=99/100

30 tháng 7 2017

1/1.2+1/2.3+1/3.4+...+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

bài này mình mới học qua vài tháng trước thui!!^_^

22 tháng 10 2016

a) Ta có công thức tính tổng các số tự nhiên liên tiếp sau:

Ôn tập toán 6

\(\Rightarrow1275=\frac{\left(1+n\right)n}{2}\Rightarrow\left(1+n\right)n=1275.2=2550=50.51\)

Mà n là số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp => n=50.

b) Đề chưa đầy đủ.

c) Ta có:

\(A=1.2+2.3+3.4+.....+19.20\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+19.20.\left(21-18\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+19.20.21-18.19.20\)

\(=\left(1.2.3+2.3.4+3.4.5+......+19.20.21\right)-\left(1.2.3+2.3.4+......+18.19.20\right)=19.20.21\)

\(\Rightarrow A=19.20.7=2660=133.2.10\Rightarrow\frac{A}{133.2}=\frac{2.133.10}{2.133}=10\)

 

 

22 tháng 10 2016

cảm ơn bạn, mà đề chỉ là nếu có thôi chứ câu b đủ rồi á bạn

2 tháng 6 2017

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}\)\(+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)\)\(-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-...-\frac{1}{100!}\)

\(=1+1+\frac{1}{2!}+...+\frac{1}{98!}-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-...-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

2 tháng 6 2017

\(=1-\frac{1}{2!}+\frac{1}{1!}-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}\)