Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : $1.3+2.4+3.5+...+99.101+100.102$
$=(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)+...+(100-1)(100+1)+(101-1)(101+1)$
$=2^2-1+3^2-1+4^2-1+...+100^2-1+101^2-1$
$=(2^2+3^2+4^2+...+100^2+101^2)-100$
b) $1.100+2.99+3.98+...+99.2+100.1$
$=1.100+2.(100-1)+3.(100-2)+...+99.(100-98)+100.(100-99)$
$=100(1+2+3+...+99+100)-(1.2+2.3+...+99.100)$
$=100.\dfrac{101.100}{2}-\dfrac{99.100.101}{3}=171700$
Tham khảo:Câu hỏi của Đào Thị Hoàng Yến - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của bui hang trang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
sao dễ vậy
a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\).
Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :
A = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :
A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)
\(a,A=-1+3-5+7-9+...-2013+2015-2017=\left(-1+3\right)+\left(-5+7\right)+...+\left(-2013+2015\right)-2017\)\(=2+2+..+2-2017\)
\(=2.504-2017=-1009\)
\(b,B=2-4+6-8+...+2014-2016+2018\)\(=2+\left(-4+6\right)+\left(-8+10\right)+...+\left(-2016+2018\right)==2+2+...+2\)\(=2+503.2=1008\)
a)
\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)
\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)
\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)
\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)
\(S=\sqrt{101}-1\)
b)
\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)
\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)
\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)
\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)
\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)
x + 1/100 + x + 2/101 = x + 3/102 - 1
<=> x + 1/100 - 1 + x + 2/101 - 1 = x + 3/102 - 1 - 2
<=> x - 99/100 + x - 99/101 = x - 99/102 - 2
<=> x - 99/100 + x - 99/101 - x - 99/102 = -2
<=> (x - 99)(1/100 + 1/101 - 1/102) = -2
<=> x - 99 = -2/1/100 + 1/101 - 1/102
<=> x = -2/1/100 + 1/101 - 1/102 + 99
Bạn chịu khó bấm máy hộ mình, số to quá
Bạn tham khảo lời giải tại đây:
Câu hỏi của Nguyễn Kim Chi - Toán lớp 7 | Học trực tuyến
Và lưu ý lần sau gõ đề bằng công thức toán nhé.