Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi n=1, ta được \(\frac{1}{2}< \frac{1}{\sqrt{2.1+1}}\Leftrightarrow\frac{1}{2}< \frac{1}{\sqrt{3}}\) : đúng
giả sử mệnh đề đúng khi n=k\(\left(k\ge1\right)\), tức là \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
Bây giờ ta chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh BĐT sau:
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\)
Thật vậy, theo giả thiết quy nạp \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
\(\Leftrightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}.\frac{2k+1}{2\cdot\left(k-1\right)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}\)
Ta cần chứng minh \(\frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\Leftrightarrow\frac{1}{\left(2k+1\right)}.\frac{\left(2k+1\right)^2}{4\left(k+1\right)^2}< \frac{1}{\left(2k+3\right)}\)
\(\Leftrightarrow\left(2k+1\right)^2\left(2k+3\right)< 4\left(k+1\right)^2\left(2k+1\right)\Leftrightarrow0< 2k+1\): luôn đúng
=>mệnh đề đúng với n=k+1
Vậy theo phương pháp quy nạp toán học \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với mọi n nguyên dương.
Lời giải:
Bài toán cần bổ sung điều kiện $n\in\mathbb{N}>1$
Quy nạp.
Với $n=2,3$ thì bài toán hiển nhiên đúng
.....
Giả sử bài toán đúng đến $n$. Tức là:
$A_n=\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{1}{\sqrt{3n+1}}$
Ta cần chứng minh nó cũng đúng với $n+1$, tức là $A_{n+1}< \frac{1}{\sqrt{3n+4}}$
Thật vậy:
$A_{n+1}=A_n.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}$
Giờ chỉ cần CM: $\frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+4}}$
$\Leftrightarrow (2n+1)^2(3n+4)< (2n+2)^2(3n+1)$
$\Leftrightarrow -n< 0$ (luôn đúng)
Vậy phép quy nạp hoàn thành. Ta có đpcm.
Trước hết ta chứng minh BĐT
\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)
Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)
\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)
Trong (1), lần lượt thay k bằng 1,2,...,n ta được:
\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)
Nhân từng vế các BĐT trên ta có:
\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)
\(tan1^0.tan89^0.tan2^0.tan88^0...tan44^0tan46^0.tan45^0\)
\(=tan1^0.cot1^0.tan2^0.cot2^0...tan44^0.cot44^0.tan45^0\)
\(=1.1.1...1=1\)
b/ Nhân cả tử và mẫu với liên hợp của mẫu và rút gọn ta được:
\(P=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+....-\sqrt{2n}-\sqrt{2n+1}\)
\(=-\sqrt{2}-\sqrt{2n+1}\)