Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x^4\)≥0 với mọi x
⇒2\(x^4\)≥0 với mọi x
Tương tự 4\(x^2\)≥0 với mọi x
⇒M≥0+0+6 với mọi x
⇒Đa thức M không có nghiệm
Với mọi x thuộc R có 2x^4 \(\ge\) 0 và 5x^2\(\ge\) 0
Suy ra 2x^4+5x^2+3\(\ge\) 3 > 0
Vậy đa thức trên vô nghiệm
\(2x^4+5x^2+3\)
Dễ thấy \(2x^4\ge0\forall x\) ; \(5x^2\ge0\forall x\)
\(\Rightarrow2x^4+5x^2+3>0\forall x\)
Vậy đa thức trên vô nghiệm
Bài 2 mk giải luôn nhé
f(x)=x^2+4x-5=x^2-x+5x-5
=x(x-1)+5(x-1)
=(x+5)(x-1)
Vậy x=-5 hoặc x=1 là nghiệm của đa thức f(x)
a)cho A(x) =m*32 -2*3=0=>9m-6=0=>9m=6=>m=2/3
b)có B(x)=x2 +2*2*x+4+6
Áp dụng hằng đẳng thức a2 +2ab+b2=(a+b)2
có B(x)=(x+2)2 +6 >0
=>đpcm
x2 - 2x = 0
=> x.(x - 2) = 0
=> x = 0 hay x - 2 = 0
=> x = 0 hay x = 0 + 2
=> x = 0 hay x = 2
tính đen ta.
x2 - 2x + 2
= x2 - x - x + 1 + 1
= x(x - 1) - (x - 1) + 1
= (x - 1)(x - 1) + 1
= (x - 1)2 + 1
Có (x - 1)2 > hoặc = 0
1 > 0
=> (x - 1)2 + 1 > hoặc = 1
=> (x - 1)2 + 1 khác 0
=> Vô nghiệm (Đpcm)