Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 2n+8=2(n-3)+14
=> 14 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}
ta có bảng
n-3 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 | |
n | -11 | -4 | 1 | 2 | 4 | 5 | 10 | 17 |
Vậy n={-11;-4;-1;2;4;5;10;17}
b) Ta co 3n+11=3(n-5)-4
=> 4 chia hết chia hết cho n+5
n nguyên => n+5 nguyên
=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
vậy n={-9;-7;-6;-4;-3;-1}
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
Ta có:
7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N
8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N
\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)
Đáp án C
Ta có:
1 log 3 x + 1 log 3 2 x + 1 log 3 3 x + . . . + 1 log 3 n x = 210 log 3 x
⇔ n n + 1 2 log 3 x = 210 log 3 x
<=> n(n+1) = 420
<=> n = 20
=> P = 2.20+3 = 43.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Chọn : C.9
Giải thích:
8n+1111...1 (n thừa số 1 )
\(\Rightarrow\) Tổng số số hạng của 1111...1 là n
\(\Rightarrow\) 8n+n=9n
Mà 9n \(⋮\) 9
\(\Rightarrow\)8n + 1111...1 ( n thừa số 1) \(⋮\) 9
Sửa đề:
Ta có:\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\forall n\)
\(\Rightarrowđpcm\)