Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(cos7x-\sqrt{3}sin7x=-2\\ \Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow7x+\dfrac{\pi}{3}=-\pi+k2\pi\\ \Leftrightarrow x=-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\)
Vì \(x\in[\dfrac{2\pi}{5};\dfrac{6\pi}{7}]\)
\(\Rightarrow\dfrac{2\pi}{5}\le x\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{2\pi}{5}\le-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{31}{15}\le k\le\dfrac{11}{3}\)
Vì \(k\in Z\) nên \(k=3\)
Vậy \(x\) cần tìm là \(\dfrac{2\pi}{3}\)
Câu 2:
\(2sin^2x-sinxcosx-cos^2x=m\\ \Leftrightarrow2\dfrac{1-cos2x}{2}-\dfrac{1}{2}s\text{in2}x-\dfrac{1+cos2x}{2}=m\\ \Leftrightarrow3cos2x+s\text{in2}x=1-2m\)
Điều kiện để phương trình có nghiệm là:
\(3^2+1^2\ge\left(1-2m\right)^2\\ \Leftrightarrow4m^2-4m-9\le0\\ \Leftrightarrow\dfrac{1-\sqrt{10}}{2}\le m\le\dfrac{1+\sqrt{10}}{2}\)
c.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(8x+\frac{2\pi}{3}\right)=\frac{1}{2}-\frac{1}{2}cos\left(\frac{14\pi}{5}-2x\right)\)
\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(2\pi+\frac{4\pi}{5}-2x\right)\)
\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(\frac{4\pi}{5}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}8x+\frac{2\pi}{3}=\frac{4\pi}{5}-2x+k2\pi\\8x+\frac{2\pi}{3}=2x-\frac{4\pi}{5}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{75}+\frac{k\pi}{5}\\x=-\frac{11\pi}{45}+\frac{k\pi}{3}\end{matrix}\right.\)
a.
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{2\pi}{3}\right)\)
\(\Leftrightarrow cos4x=-cos\left(2x+\frac{2\pi}{3}\right)\)
\(\Leftrightarrow cos4x=cos\left(\frac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-2x+k2\pi\\4x=2x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k\pi}{3}\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(10x+\frac{2\pi}{3}\right)-\frac{1}{2}-\frac{1}{2}cos\left(6x+\frac{\pi}{2}\right)=0\)
\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=-cos\left(6x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=cos\left(\frac{\pi}{2}-6x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}10x+\frac{2\pi}{3}=\frac{\pi}{2}-6x+k2\pi\\10x+\frac{2\pi}{3}=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{96}+\frac{k\pi}{8}\\x=-\frac{7\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)
1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)
\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)
\(\Leftrightarrow5\sin2x+5\cos2x=5\)
\(\Leftrightarrow\cos2x+\sin2x=1\)
\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)
\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)
\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
a/ Thiếu đề, sau dấu "-" hình như còn gì đó
b/ \(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\left(\frac{\pi}{4}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
c/ \(\Rightarrow sin2x=-sinx\Leftrightarrow sin2x=sin\left(-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=-x+k2\pi\\2x=\pi+x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)
d/ \(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1\)
\(\Leftrightarrow sinx.cosx=0\Leftrightarrow sin2x=0\)
\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)
e/ f/ Thiếu đề
g/ \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=-cos2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=cos\left(\pi-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=2x+k2\pi\\3x=-2x+k2\pi\\3x=\pi-2x+k2\pi\\3x=2x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=-\pi+k2\pi\end{matrix}\right.\)
a/ \(cos\left(x+15^0\right)=1\Leftrightarrow x+15^0=k360^0\Rightarrow x=-15^0+k360^0\)
b/ \(cos\left(3x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\3x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
c/ \(cos\left(4x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{3}\Rightarrow cos\left(4x-\frac{\pi}{4}\right)=cosa\)
\(\Rightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=a+k2\pi\\4x-\frac{\pi}{4}=-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{16}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
d/ \(cos4x=cos\left(x+\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=4x+k2\pi\\x+\frac{\pi}{3}=-4x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{9}+\frac{k2\pi}{3}\\x=-\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/ \(cos5x=-cos3x=cos\left(\pi-3x\right)\Rightarrow\left[{}\begin{matrix}5x=\pi-3x+k2\pi\\5x=3x-\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=-\frac{\pi}{2}+k\pi\end{matrix}\right.\)
Có \(\sin a-\cos a=-\sqrt{2}\left(-\sin a.\sin\dfrac{\pi}{4}+\cos a.\cos\dfrac{\pi}{4}\right)\)
\(=-\sqrt{2}\cos\left(a+\dfrac{\pi}{4}\right)\)
\(\Rightarrow\left(\sin a-\cos a\right)^2=2.\cos^2\left(a+\dfrac{\pi}{4}\right)\)