\(⋮\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\Leftrightarrow n^3-8+6⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

 

17 tháng 10 2018

????? đề j kì zể???

21 tháng 10 2022

a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)

\(=-n^2+5n\)

Cái này nếu n=1 thì ko thỏa mãn nha bạn

b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)

\(=49n+55\)

Nếu n là số lẻ thì 49n+55 chia hết cho 2

Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

7 tháng 9 2017

a) Ta có: \(n^3-n=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Vì n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp

nên n(n - 1)(n + 1) chia hết cho 3. (do trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3)

b) Ta có: \(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích 5 số nguyên liên tiếp

nên (n - 2)(n - 1)n(n + 1)(n + 2) chia hết cho 5

mà 5n(n - 1)(n + 1) chia hết cho 5

(n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n - 1)(n + 1) chia hết cho 5

Vậy ...

3 tháng 11 2017

a,

6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \

Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau :

\(2n+5\) \(1\) \(7\) \(-1\) \(-7\)
\(n\) \(-2\) \(1\) \(-3\) \(-6\)

Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B

b, tường tự câu a

Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho

3 tháng 11 2017

Đặt tính chia:

6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7

\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)

Ta lập bảng giá trị :

\(2n+1\) \(-1\) \(1\) \(-7\) \(7\)
\(n\) \(-1\) \(0\) \(-4\) \(3\)

\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)

\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)

b) Xem lại đề

\(\)

5 tháng 7 2016

xem lại câu a nhé bạn

19 tháng 3 2017

a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)

vì A nguyên tố nên A chỉ có 2 ước

TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn

TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn

vậy n=2

xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

1 tháng 8 2018

\(a,\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left(n+2-n+2\right)\left(n+2+n-2\right)\)

\(=4.2n=8n⋮8\)

\(b,\left(n+7\right)^2-\left(n-5\right)^2\)

\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)

\(=12.\left(2+2n\right)=24+24n⋮24\)

1 tháng 8 2018

\(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=n^2+4n+4-\left(n^2-4n+4\right)\)

\(=n^2+4n+4-n^2+4n-4\)

\(=8n⋮8\left(đpcm\right)\)

\(\left(n+7\right)^2-\left(n-5\right)^2\)

\(=n^2+14n+49-\left(n^2-10n+25\right)\)

\(=n^2+14n+49-n^2+10n-25\)

\(=24n+24\)

\(=24\left(n+1\right)⋮24\left(đpcm\right)\)