K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1/5^3+1/6^3+...+1/2023^3

1/5^3<1/4*5*6

Xét tương tự, ta đều sẽ được:

\(\dfrac{1}{n^3}< \dfrac{1}{n\left(n-1\right)\left(n+1\right)}\)

=>\(A< \dfrac{1}{4\cdot5\cdot6}+\dfrac{1}{5\cdot6\cdot7}+...+\dfrac{1}{2022\cdot2023\cdot2024}\)

=>\(A< \dfrac{1}{2}\left(\dfrac{2}{4\cdot5\cdot6}+\dfrac{2}{5\cdot6\cdot7}+...+\dfrac{2}{2022\cdot2023\cdot2024}\right)\)

=>\(A< \dfrac{1}{2}\left(\dfrac{1}{4\cdot5}-\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}-\dfrac{1}{7\cdot8}+...+\dfrac{1}{2022\cdot2023}-\dfrac{1}{2023\cdot2024}\right)\)

=>A<1/40

Ta có BĐT: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}< \dfrac{1}{k^3}< \dfrac{1}{\left(k-1\right)\cdot k\cdot\left(k+1\right)}\)

Do đó, ta được:

\(\dfrac{1}{5\cdot6\cdot7}+\dfrac{1}{6\cdot7\cdot8}+...+\dfrac{1}{2023\cdot2024\cdot2025}< A\)

\(\Leftrightarrow A>\dfrac{1}{2}\left(\dfrac{1}{5\cdot6}-\dfrac{1}{2024\cdot2025}\right)>\dfrac{1}{2}\left(\dfrac{1}{30}-\dfrac{1}{390}\right)=\dfrac{1}{65}\)

=>1/65<A<1/40

29 tháng 6 2023

a

ĐK: \(x\ne5\)

\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

b

ĐK: \(x\ne0;x\ne-1\)

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)

 

a: =>(x-5)/3=12/(x-5)

=>(x-5)^2=36

=>x-5=6 hoặc x-5=-6

=>x=11 hoặc x=-1

b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)

=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048

=>1/2-1/x+1=2023/4048

=>1/(x+1)=1/4048

=>x+1=4048

=>x=4047

28 tháng 6 2017

a

= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}

Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.

Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .

20 tháng 7 2017

Kết quả là : C1=\(\dfrac{2}{3}\)

21 tháng 9 2023

\(a,0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{5}{6}+\dfrac{39}{35}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\left(\dfrac{5}{6}-\dfrac{1}{6}\right)+\left(\dfrac{39}{35}-\dfrac{4}{35}\right)\\ =\dfrac{2}{3}+1\\ =\dfrac{4}{3}.\)

\(b,\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5+\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(-6-\dfrac{7}{4}+\dfrac{3}{2}\right)\\ =3-\dfrac{1}{4}+\dfrac{2}{3}-5-\dfrac{1}{3}+\dfrac{6}{5}+6+\dfrac{7}{4}-\dfrac{3}{2}\\ =\left(3-5+6\right)+\left(-\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{2}{3}-\dfrac{1}{3}\right)+\left(\dfrac{6}{5}+\dfrac{7}{4}\right)\\ =4-\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{5}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{17}{6}+\dfrac{59}{20}\\ =\dfrac{347}{60}.\)

\(c,\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\dfrac{1}{3}+\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\left(\dfrac{1}{3}-\dfrac{2}{9}\right)+\left(\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}\right)+\dfrac{1}{64}\\ =\dfrac{1}{9}+\dfrac{13}{18}+\dfrac{2}{3}+\dfrac{1}{64}\\ =\dfrac{3}{2}+\dfrac{1}{64}\\ =\dfrac{65}{64}.\)

21 tháng 9 2023

câu cuối có sai ko bn?

5 tháng 7 2017

chắc h có mấy thành cay r nên ko làm bn lên mạng tải phẩn mêm có cánh iair đó :D

5 tháng 7 2017

@Đoàn Đức Hiếu

21 tháng 6 2022

\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)

\(\Rightarrow2x=\dfrac{1}{5}\)

\(\Rightarrow x=\dfrac{1}{10}\)

\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)

\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)

\(\Leftrightarrow-\dfrac{8}{5}+x=2\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)

\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)

\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)

\(\Leftrightarrow x=-\dfrac{49}{8}\)

\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)

\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)

\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)

\(\Leftrightarrow x=\dfrac{413}{160}\)

 

13 tháng 7 2022

a)\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}

2 \cdot x=\dfrac{1}{5}

x=\dfrac{1}{5}: 2

 x=\dfrac{1}{10}
b) \left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}

-1 \dfrac{3}{5}+x=\dfrac{13}{6} \cdot \dfrac{12}{13}
x=2+1 \dfrac{3}{5}

 x=3 \dfrac{3}{5}
c) \left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}

x \cdot \dfrac{3}{7} \cdot \dfrac{1}{7}=\dfrac{-3}{8}

x=\dfrac{-3}{8}: \dfrac{3}{49}
x=\dfrac{-49}{8}=-6 \dfrac{1}{8}
d) \dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)

\dfrac{-4}{7} x+\dfrac{7}{5}=\dfrac{1}{8} \cdot \dfrac{-3}{5}
-\dfrac{4}{7} x=\dfrac{-3}{40}-\dfrac{7}{5} \\ x=\dfrac{-59}{40}: \dfrac{-4}{7}=\dfrac{413}{160}=2 \dfrac{93}{160}
 

12 tháng 2 2018

Ta có: \(n^3-n< n^3\forall n\)

mà: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Nên: \(\left(n-1\right)n\left(n+1\right)< n^3\Leftrightarrow\dfrac{1}{\left(n-1\right)n\left(n+1\right)}>\dfrac{1}{n^3}\)

Trở lại bài toán:

\(SV=\dfrac{1}{5^3}+\dfrac{1}{6^3}+\dfrac{1}{7^3}+...+\dfrac{1}{2004^3}< \dfrac{1}{\left(5-1\right).5.\left(5+1\right)}+\dfrac{1}{\left(6-1\right).6.\left(6+1\right)}+\dfrac{1}{\left(7-1\right).7.\left(7+1\right)}+...+\dfrac{1}{\left(2004-1\right).2004.\left(2004+1\right)}\)

\(SV< \dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+...+\dfrac{1}{2003.2004.2005}=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}+\dfrac{1}{5.6}-\dfrac{1}{6.7}+\dfrac{1}{6.7}-\dfrac{1}{7.8}+...+\dfrac{1}{2003.2004}-\dfrac{1}{2004.2005}\right)=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{2004.2005}\right)=\dfrac{1}{2.4.5}-\dfrac{1}{2.2004.2005}=\dfrac{1}{40}-\dfrac{1}{2.2004.2005}< \dfrac{1}{40}\left(đpcm\right)\)

a: Ta có: \(\dfrac{1}{4}:x=3\dfrac{4}{5}:40\dfrac{8}{15}\)

\(\Leftrightarrow x=\dfrac{1}{4}\cdot\dfrac{\dfrac{608}{15}}{3+\dfrac{4}{5}}\)

\(\Leftrightarrow x=\dfrac{152}{15}:\dfrac{19}{5}=\dfrac{8}{3}\)

b: Ta có: \(\left(x+1\right):\dfrac{5}{6}=\dfrac{20}{3}\)

\(\Leftrightarrow x+1=\dfrac{50}{9}\)

hay \(x=\dfrac{41}{9}\)

c: Ta có: \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(\Leftrightarrow x^2-1=63\)

\(\Leftrightarrow x^2=64\)

hay \(x\in\left\{8;-8\right\}\)

16 tháng 10 2022

c. \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\) 

    \(7.9=\left(x-1\right).\left(x+1\right)\) 

    \(63=x^2-1\) 

             \(x^2=63+1\) 

             \(x^2=64\) 

             \(x^2=8^2\)

             \(x=8\)