K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

Xét tam giác BDC có:

M là trung điểm BC(gt)

E là trung điểm BD(gt)

=> EM là đường trung bình tam giác BDC

=> EM//DC và \(EM=\dfrac{1}{2}DC\left(1\right)\)

Mà \(I\in DC\)

=> EM//DI

Xét tam giác AEM có

EM//DI(cmt)

D là trung điểm AE(gt)

=> I là trung điểm AM

=> DI là đường trung bình tam giác AEM

=> \(DI=\dfrac{1}{2}EM\left(2\right)\)

Từ (1),(2)

=> \(DI=\dfrac{1}{2}.\dfrac{1}{2}DC=\dfrac{1}{4}DC\left(đpcm\right)\)

 

 

17 tháng 9 2021

cam on

 

27 tháng 5 2016

mk ms hk lp 6 nên ko bít làm !! Sorry

27 tháng 5 2016

toán hại não xàm qá làm dc mk chết nhờ thiên tài bày ch

4 tháng 4 2016

Sai đề rồi nha bạn! 

Đề:  Cho  \(a,b,c>0\)  thỏa mãn  \(a^2+b^2+c^2=\frac{5}{3}.\)  Chứng minh rằng:  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Lời giải:

Với mọi  \(a,b,c\in R\)  thì ta luôn có:

\(a^2+b^2+c^2\ge2bc+2ca-2ab\)  \(\left(\text{*}\right)\) 

Ta cần chứng minh  \(\left(\text{*}\right)\)  là bất đẳng thức đúng!

Thật vậy,  từ  \(\left(\text{*}\right)\)  \(\Leftrightarrow\)  \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

                             \(\Leftrightarrow\)  \(\left(a+b-c\right)^2\ge0\)  \(\left(\text{**}\right)\)

Bất đẳng thức  \(\left(\text{**}\right)\)  hiển nhiên đúng với mọi  \(a,b,c\) , mà các phép biến đổi trên tương đương 

Do đó, bất đẳng thức  \(\left(\text{*}\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi  \(a+b=c\)

Mặt khác,  \(a^2+b^2+c^2=\frac{5}{3}\)  (theo giả thiết)

Mà  \(\frac{5}{3}=1\frac{2}{3}<2\)

\(\Rightarrow\)  \(a^2+b^2+c^2<2\)  \(\left(\text{***}\right)\)

Từ  \(\left(\text{*}\right)\) kết hợp với  \(\left(\text{***}\right)\), ta có thể viết 'kép' lại:  \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)

Suy ra  \(2bc+2ca-2ab<2\)

Khi đó, vì  \(abc>0\) (do  \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho  \(2abc\), ta được:

\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)

\(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Vậy, với  \(a,b,c\)  là các số thực dương thỏa mãn điều kiện  \(a^2+b^2+c^2=\frac{5}{3}\)  thì ta luôn chứng minh được:

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

14 tháng 9 2015

tick cho mik rùi mik làm cho nha

31 tháng 10 2021

\(A=x^5+x^4+1\)

\(=x^5+x^4+x^3-x^3+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^3-1\right)\)

\(=x^3.\left(x^2+x+1\right)-\left(x-1\right).\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right).\left(x^3-x+1\right)\)

29 tháng 5 2019

Áp dụng bất đẳng thức AM-GM 3 số không âm :

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{abc}{abc}}=3\sqrt[3]{1}=3\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Leftrightarrow a=b=c\)

29 tháng 5 2019

MInh cam on nhe!

18 tháng 5 2017

BÀi 1

D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )- 6

Vì  - (x - 2 ) \(\le0\)nên - (x - 2 )- 6 \(\le-6< 0\)

Vậy D = 4x - 10 - x2 luôn âm (dpcm)

16 tháng 10 2015

bài toán gì mà dài dòng quá

22 tháng 7 2017

-x2-y2+8x+4y-21
=(-x2+8x-16)+(-y2+4y-4)-1
=-(x-4)2-(y-2)2-1
rồi đấy tự làm đi