Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
(a)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1) chia hết cho 16 (dpcm)
(b)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2) chia hết cho 24 (dpcm)
G ọ i h a i s ố l ẻ l i ê n t i ế p l à : 2 k - 1 ; 2 k + 1 k ∈ N * T h e o b à i r a t a c ó 2 k + 1 2 - 2 k - 1 2 = 4 k 2 + 4 k + 1 - 4 k 2 + 4 k - 1 = 4 k + 4 k = 8 k ⋮ 8
Đáp án cần chọn là :A
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
a^2-(a-2)^2
=(a-a+2)(a+a-2)
=2(2a-2)
=4(a-1)