K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(\left(a^2-b^2\right)^2+\left(2ab\right)^2=a^4+b^4-2a^2b^2+4a^2b^2=\left(a^2+b^2\right)^2\)

19 tháng 6 2019

\(\left(A^2-B^2\right)^2+\left(2AB\right)^2\)

\(=\left(A^2\right)^2-2A^2B^2+\left(B^2\right)^2+4A^2B^2\)

\(=\left(A^2\right)^2+\left(B^2\right)^2+2A^2B^2\)

\(=\left(A^2+B^2\right)^2\)

Vậy ....

19 tháng 6 2019

VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)

=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)

=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)

12 tháng 2 2016
ban chat cua no thi giong nhau ca thui nhung lm cac cach khac nhau de de dang bien doi trong tung bai toan(xl vi ko co pkan mem go TV)
31 tháng 5 2016

\(\left(A-B\right)^2+4AB=A^2-2AB+B^2+4AB=\)\(A^2+2AB+B^2\)

Bản chất của chúng tương đương nhau , 1 số trường hợp dùng dẳng thức trên nhằm mục đích làm xuất hiện nhân tử chung ....

a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

\(=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)

b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)

\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)

\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)

\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)

10 tháng 8 2016

2. CM đẳng thức

a) \(a^2+b^2=\left(a+b\right)^2-2ab\)

Ta có: \(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab=a^2+b^2=VT\)

b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)

Ta có: \(VP=\left(a^2+b^2\right)^2-2a^2b^2=a^4+2a^2b^2+b^4-2a^2b^2=a^4+b^4=VT\)

10 tháng 8 2016

giúp mik bài 1 vs nhé

 

 

21 tháng 9 2023

\(a)\)  \( 49(y-4)^2-9(y+2)^2\)

\(=[7(y-4)]^2-[3(y+2)]^2\)

\(=[7(y-4)-3(y+2)][7(y-4)+3(y+2)]\)

\(=(7y-28-3y-6)(7y-28+3y+6)\)

\(=(4y-34)(10y-22)\)

\(b)\)   \((a^2+b^2-5)^2-2(ab+2)^2\)

\(=\left(a^2+b^2-5\right)^2-\left[\sqrt{2}\left(ab+2\right)\right]^2\)

Xem lại đề...

cảm ơn bạn Rồng Đỏ Bảo Lửa

6 tháng 6 2020

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

6 tháng 8 2017

(2a-b)- 2 x ( 2a-b) x (a+b) + (a + b)2

= [(2a-b) - (a+b)]2

28 tháng 7 2018

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)[\left(a+b+c\right)^2-3ab-3ac-3bc]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right).2\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)]\)

\(=\frac{1}{2}\left(a+b+c\right)[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]\)