Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3n+2}{2n-1}\in Z\Rightarrow\frac{2\left(3n+2\right)}{2n-1}\in Z\Rightarrow3+\frac{7}{2n-1}\in Z\)
\(\Rightarrow\frac{7}{2n-1}\in Z\Rightarrow2n-1=Ư\left(7\right)=\left\{-1;1;7\right\}\)
\(\Rightarrow n=\left\{0;1;4\right\}\)
Vậy \(A=\left\{0;1;4\right\}\)
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(A=17\cdot25^2-6\left(25^n-8^n\right)\)
\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”
Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”
Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”
Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”
Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)
Vậy khẳng định đúng với n=1.
Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)
Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:
\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)
\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)
\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)
Mà \(\left(m^3+3m^2+5m\right)⋮3\)
\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)
Do đó khẳng định đúng với n=m+1.
Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)
\(\forall n\ge1,n\in N\)
Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)
Vì n(n+1) (n+2) tích của 3 số tự nhiên liên tiếp
=> n( n+1) (n+2) chia hết cho 3
và 3n c hia hết cho 3
=> \(n^3+3n^2+5n\) chia hết cho 3
a: \(\Leftrightarrow4n-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow6n+10⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{2;1;11;-8\right\}\)