Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(A=11^{n+2}+12^{2n+1}\)
Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)
Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)
\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)
Vậy \(A\vdots 133\) (đpcm)
b) Đề bài không rõ
c)
Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)
\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)
\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)
a) \(11^{n+2}+12^{2n+1}\)
= \(11^n.121+12^{2n}.12\)
= \(11^n.\left(133-12\right)+144^n.12\)
= \(11^n.\left(133-12\right)+\left(133+11\right)^n.12\) (1)
Ta có: \(\left(133+11\right)^n=133^n+133^{n-1}.11+...+133.11^{n-1}+11^n⋮133\)(vì mỗi số hạng đều chứa thừa số 133)
Ta kí hiệu số chia hết cho 133 là B (133).
Do đó \(\left(133+11\right)^n=B\left(133\right)+11^n\)
Thay vào (1), ta được:
\(11^n.133-11^n.12+\left[B\left(133\right)+11^n\right].12\)
= \(B\left(133\right)-11^n.12+B\left(133\right)+11^n.12\)
= B (133)
Vậy: \(11^{n+2}+12^{2n+1}⋮133\).
b) \(5^{n+2}+26.5^n+8^{2n+1}\)
= \(5^n.25+26.5^n+8^{2n}.8\)
= \(5^n.\left(25+26\right)+64^n.8\)
= \(5^n.\left(59-8\right)+\left(59+5\right)^n.8\) (1)
Ta có: \(\left(59+5\right)^n=59^n+59^{n-1}.5+...+59.5^{n-1}+5^n⋮59\)(vì mỗi số hạng đều chứa thừa số 59)
Ta kí hiệu số chia hết cho 59 là B (59).
Do đó \(\left(59+5\right)^n=B\left(59\right)+5^n\)
Thay vào (1), ta được:
\(5^n.59-5^n.8+\left[B\left(59\right)+5^n\right].8\)
= \(B\left(59\right)-5^n.8+B\left(59\right)+5^n.8\)
= B (59)
Vậy: \(5^{n+2}+26.5^n+8^{2n+1}⋮59\)
(Đề bài còn thiếu \(n\in N\))
\(5^{n+2}+26.5^n+8^{2n+1}=5^n.5^2+26.5^n+8^{2n+1}=5^n.\left(5^2+26\right)+8^{2n+1}=5^n.51+64^n.8\)
\(=5^n.59-5^n.8+8^{2n}.8=5^n.59+8.\left(-5^n+64^n\right)\)
Mà: -5n + 64n chia hết cho -5 + 64 = 59 =>8.(-5n + 64n) chia hết cho 59 và 5n . 59 chia hết cho 59
=> 5n. 59 + 8.(-5n + 64n) chia hết cho 59
=> 5n + 2 + 26.5n + 82n + 1 chia hết cho 59
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
C= 5n.52 + 26.5n + 26n. 8
= 5n(25+26) + 26n.8
= 5n.51 + 26n.8