Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
A = \(\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{x^2-1}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x^2-1\right)}\)
= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}-\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(\left(\dfrac{x^2-x+3x-3-6-x^2-2x-1}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)
= \(-\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{2\left(x+1\right)\left(x-1\right)}{3}\)
= \(-\dfrac{10}{3}\)
Vậy phương trình trên ko phụ thuộc vào biến
a.
\(x\left(y+z-yz\right)-y\left(z+x-xz\right)+z\left(y-x\right)=xy+xz-xyz-yz-xy+xyz+yz-xz=0\)
Vậy giá trị của biểu thức rên không phụ thuộc vào x.
b.
\(\left(x+1\right)\left(1+x-x^2+x^3-x^4\right)-\left(x-1\right)\left(1+x+x^2+x^3+x^4\right)+2x^5-2x\)
\(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2-x^3-x^4-x^5+1+x+x^2+x^3+x^4+2x^5-2x\)
= 2
Vậy giá trị của biểu thức trên không phụ thuộc vào x.
Bài 1:
a: \(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{-2x}{1}\cdot\dfrac{x-1}{4}=-\dfrac{x\left(x-1\right)}{2}\)
b: Để \(\dfrac{P-4}{5}=x\) thì P-4=5x
=>P=5x+4
\(\Leftrightarrow-\dfrac{x\left(x-1\right)}{2}=5x+4\)
=>-x2+x=10x+8
=>x2-x=-10x-8
=>x2+9x+8=0
=>x=-8(nhận) hoặc x=-1(loại)
A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x)
= - x+6/x+2
\(A=\frac{1}{2}x^4+x^2y^2+\frac{1}{2}y^4-2x^2y^2\)
\(=\frac{1}{2}\left(x^4-2x^2y^2+y^4\right)=\frac{1}{2}\left(x^2-y^2\right)^2=\frac{1}{2}.4^2=8\)
Tử = x4 + (x2 + x + 1)
x4 \(\ge\) 0 với mọi x ; x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{3}{4}\) = (x + \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0
=> Tử > 0 với mọi x
+) Mẫu = (x4 - x3 + x2) + (x2 - x + 1) = x2.(x2 - x + 1) + (x2 - x + 1) = (x2 + 1). (x2 - x + 1) > 0 với mọi x
Do x2 + 1 > 0 ; x2 - x + 1 = (x - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0
Vậy A > 0 với mọi x