Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhiacopxkia dạng phân thức ta có :
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
Hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)(đpcm)
Bài Hiếu đúng rồi
Cách nữa dùng cô-si
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\)
\(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng 3 bđt rồi chuyển vế ra đpcm
Đề sai ở mẫu ấy! Mẫu chẳng có cái nào bình phương lên đâu bạn ạ!
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Thị Ngọc Thơ, @tth_new
help me! cần gấp lắm ạ!
thanks nhiều!
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
Cách 1:
Áp dụng bđt Bunhiacopxki :
\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cách 2:
Áp dụng bđt Cô-si :
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\cdot\left(b+c\right)}{4\cdot\left(b+c\right)}}=a\)
Tương tự : \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\); \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng vế :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng BĐT : \(x^2+y^2\ge2xy\) ( xảy ra đẳng thức khi \(x=y\) ) , ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2.\frac{a}{b}.\frac{b}{c}=2.\frac{a}{c}.\) Tương tự : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2.\frac{b}{a};\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2.\frac{c}{b}\)
Cộng từng vế ba bất đẳng thức trên :
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}.\)
Cảm ơn bạn nhìu , giúp mk một bài nữa nhé !!!