Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Ta có:
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\) (*)
Theo bất đẳng thức Cauchy, có: \(y+z\ge2\sqrt[]{yz}\)(1)
Và \(\frac{1}{y}+\frac{1}{z}\ge2.\frac{1}{\sqrt{yz}}=\frac{2}{\sqrt{yz}}\) (2)
Nhân (1) với (2) ta được: \(\left(y+z\right)\left(\frac{1}{y}+\frac{1}{z}\right)\ge2\sqrt{yz}.\frac{2}{\sqrt{yz}}=4\)
=> \(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) Thay vào (*) ta được:
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x}{4}.\frac{4}{y+z}=\frac{x}{y+z}\)
=> \(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\ge\frac{x}{y+z}\left(đpcm\right)\)
Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V
Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)
Theo AM-GM , có :
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
Nhân vế theo vế :
\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Ta có : \(\frac{x^2}{1+16x^4}=\frac{x^2}{1+\left(4y^2\right)^2}\le\frac{y^2}{2.4y^2}=\frac{1}{8}\)
\(\frac{y^2}{1+16y^4}=\frac{y^2}{1+\left(4y^2\right)^2}\le\frac{y^2}{2.4y^2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{x^2}{1+16x^4}+\frac{y^2}{1+16y^4}\le\frac{1}{4}\)
=> ĐPCM