K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

a, \(\dfrac{1-sin2a}{1+sin2a}\)

\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)

\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)

\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)

19 tháng 8 2021

b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)

\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)

\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)

\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)

\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)

\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)

NV
21 tháng 4 2021

\(\dfrac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow tana< 0\)

\(tana-3cota=2\Leftrightarrow tana-\dfrac{3}{tana}=2\)

\(\Leftrightarrow tan^2a-2tana-3=0\Rightarrow\left[{}\begin{matrix}tana=-1\\tana=3>0\left(loại\right)\end{matrix}\right.\)

\(\dfrac{1}{cos^2a}=1+tan^2a\Rightarrow cosa=-\sqrt{\dfrac{1}{1+tan^2a}}=-\dfrac{\sqrt{2}}{2}\)

\(sina=cosa.tana=\dfrac{\sqrt{2}}{2}\)

NV
4 tháng 6 2020

Công thức hạ bậc

\(sin^2a=\frac{1}{2}-\frac{1}{2}cos2a\)

Julian Edward

NV
31 tháng 5 2020

\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)

\(P=1-\left[1-cos\left(\frac{\pi}{2}-2a\right)\right]+sin2a-cos2a-6cota\)

\(=sin2a+sin2a-cos2a-6cota\)

\(=2sin2a-cos2a-6cota\)

\(=4sina.cosa-\left(cos^2a-sin^2a\right)-\frac{6cosa}{sina}\) (thay số và bấm máy)

25 tháng 7 2018

bài 1) ta có : \(G=cos\left(\alpha-5\pi\right)+sin\left(\dfrac{-3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)

\(G=cos\left(\alpha-\pi\right)+sin\left(\dfrac{\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\)

\(G=cos\left(\pi-\alpha\right)+sin\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)-tan\left(\pi+\alpha-\dfrac{\pi}{2}\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\) \(G=cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\dfrac{\pi}{2}-\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)=2cos\alpha+1\) bài 2) ta có : \(H=cot\left(\alpha\right).cos\left(\alpha+\dfrac{\pi}{2}\right)+cos\left(\alpha\right)-2sin\left(\alpha-\pi\right)\) \(H=cot\left(\alpha\right).cos\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)+cos\left(\alpha\right)+2sin\left(\pi-\alpha\right)\) \(H=-cot\left(\alpha\right).sin\left(\alpha\right)+cos\left(\alpha\right)+2sin\left(\alpha\right)\) \(H=-cos\alpha+cos\alpha+2sin\alpha=2sin\alpha\)

\(B=\sqrt{2}\left(sina-cosa\right)-\sqrt{2}\left(cosa+sina\right)\)

\(=\sqrt{2}\cdot\left(-2cosa\right)=-2\sqrt{2}\cdot\dfrac{1}{3}=-\dfrac{2\sqrt{2}}{3}\)

NV
5 tháng 6 2020

\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)

\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)

\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)

6 tháng 6 2018

H = \(\cot\left(\alpha-2\pi\right)\) . \(\cos\left(\alpha-\dfrac{3\pi}{2}\right)\) + \(\cos\left(\alpha-6\pi\right)\) - 2\(\sin\left(\alpha-\pi\right)\)

⇔H = \(\cot\alpha\). \(\cos\left(\alpha+\dfrac{\pi}{2}-2\pi\right)\) + \(\cos\alpha\) + 2\(\sin\left(\pi-\alpha\right)\)

⇔H = \(\cot\alpha\). \(\cos\left(\alpha+\dfrac{\pi}{2}\right)\) + \(\cos\alpha\) + 2\(\sin\alpha\)

⇔H = \(\cot\alpha\) . (-\(\sin\alpha\)) + \(\cos\alpha\) + 2\(\sin\alpha\)

⇔H = -\(\cos\alpha\) + \(\cos\alpha\) + 2\(\sin\alpha\)

⇔H = 2\(\sin\alpha\)

Vậy H = 2\(\sin\alpha\)