K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

a)  \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\end{cases}}\)

\(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow C=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3\sqrt{x}+9}{9-x}:\frac{2\sqrt{x}+4}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3}{3-\sqrt{x}}\cdot\frac{x-3\sqrt{x}}{2\sqrt{x}+4}\)

\(\Leftrightarrow C=\frac{-3}{2\sqrt{x}+4}\)

b) Để \(-\frac{3}{2\sqrt{x}+4}< -1\)

\(\Leftrightarrow\frac{1+2\sqrt{x}}{2\sqrt{x}+4}< 0\)

Vì \(\hept{\begin{cases}1+2\sqrt{x}>0\\2\sqrt{x}+4>0\end{cases}\Leftrightarrow C>0}\)

Vậy để C <-1 <=> \(x\in\varnothing\)

c) \(A=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow A^2=3+2+2\sqrt{5}=5+2\sqrt{5}\)

   \(B=\sqrt{5}+1\)

\(\Leftrightarrow B^2=5+1+2\sqrt{5}=6+2\sqrt{5}\)

Vì \(5+2\sqrt{5}< 6+2\sqrt{5}\)

\(\Leftrightarrow A^2< B^2\)

\(\Leftrightarrow A< B\)

Vậy \(\frac{1}{\sqrt{3}-\sqrt{2}}< \sqrt{5}+1\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

25 tháng 5 2017

em ko biết em mới học lớp 1

4 tháng 8 2018

Thế mà cùng nói

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

19 tháng 9 2020

Mình tách thành hai phần nhìn cho dễ hiểu nhé !

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

+) \(\frac{x-3\sqrt{x}}{x-9}-1=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}-1=\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}\)

+) \(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{9-x+x-9-x+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

=> \(\frac{-3}{\sqrt{x}+3}\div\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{-3}{\sqrt{x}+3}\times\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{4-x}\)

\(=\frac{3\left(\sqrt{x}-2\right)}{x-4}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3}{\sqrt{x}+2}\)

20 tháng 10 2020

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

a) \(=\left(\frac{x+2\sqrt{x}-7}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{1-\sqrt{x}}{\sqrt{x}-3}\right)\div\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{x+2\sqrt{x}-7}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{x+2\sqrt{x}-7}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{3-2\sqrt{x}-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{x+2\sqrt{x}-7+3-2\sqrt{x}-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-3}\)

b) Để \(P\left(\sqrt{x}-3\right)=\left|x-3\right|\)

=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}\cdot\left(\sqrt{x}-3\right)=\left|x-3\right|\)(\(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\))

=> \(\sqrt{x}-1=\left|x-3\right|\)

=> \(\orbr{\begin{cases}\sqrt{x}-1=x-3\left(x\ge3\right)\\\sqrt{x}-1=3-x\left(1\le x< 3\right)\end{cases}}\)

=> \(\orbr{\begin{cases}x=4\\x=\frac{9-\sqrt{17}}{2}\end{cases}}\)

c) Em chịu T.T

C =  \(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\)\(\left(\frac{-\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)(  \(x\ge0\) , \(x\ne9;4\))

 =  \(\frac{x-9-x+3\sqrt{x}}{x-9}\)\(\frac{9-x+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\frac{3\sqrt{x}-9}{x-9}\)\(\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

=  \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(:\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(\frac{3}{\sqrt{x}-2}\)

#mã mã#