Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)
\(\Leftrightarrow C=\frac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}:\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\)
\(\Leftrightarrow C=\frac{2\sqrt{a}+2\sqrt{a}+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}.\frac{\left(2-\sqrt{a}\right).\sqrt{a}}{\sqrt{a}-3}=\frac{\left(4\sqrt{a}+4a\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)}\)
b) Để C>0 thì \(\frac{4\left(a-\sqrt{a}\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\sqrt{a}+3}>0hay\left(a-\sqrt{a}\right)>0=>a>1\)
c) bổ sung ý c) tìm a để C=-1
để B=-1
\(\Leftrightarrow\left(4\sqrt{a}+4a\right)\sqrt{a}=-\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)\)
\(\Leftrightarrow4a+4a\sqrt{a}=-a+3\sqrt{a}-2\sqrt{a}+6\)
\(\Leftrightarrow5a+4a\sqrt{a}-\sqrt{a}-6=0=>\orbr{\begin{cases}\sqrt{a}=1\\5\sqrt{a}+4a-1=0\left(zô\right)lý\end{cases}=>a=1}\)
a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)
= \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{2}{a-1}\)
b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1
=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 }
Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao
\(p=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}.\frac{a-2a+1-a-2a-1}{\left(a-1\right)}\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{-4\sqrt{a}}{\left(a-1\right)}\)
\(=\frac{1-a}{\sqrt{a}}\)
\(b,\)Để P < 0 thì \(\frac{1-a}{\sqrt{a}}< 0\)
\(\sqrt{a}>0\)
\(1-a< 0\Rightarrow a>1\)
Vậy x > 1 thì P < 0
C=\(\left(\frac{2+\sqrt{a}}{2-\sqrt{a}}-\frac{2-\sqrt{a}}{2+\sqrt{a}}-\frac{4a}{a-4}\right):\left(\frac{2}{2-\sqrt{a}}-\frac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
\(\Leftrightarrow C=\left(\frac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2+4a}{4-a}\right)\):\(\left(\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\right)\)
\(\Leftrightarrow C=\frac{4+4\sqrt{a}+a-4+4\sqrt{a}-a+4a}{4-a}\).\(\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{\sqrt{a}-3}\)
\(\Leftrightarrow C=\frac{4\sqrt{a}(\sqrt{a}+2)}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}.\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{\sqrt{a}-3}\)
\(\Leftrightarrow C=\frac{4a}{\sqrt{a}-3}\)
b. Để C>0 thì \(\sqrt{a}\)-3>0 ( Do 4\(\sqrt{a}\)>0 với mọi a>0)
\(\Leftrightarrow\sqrt{a}>3\Leftrightarrow\text{}a>9\)
Vậy khi a>9 thì C>0
c. C=-1
\(\Leftrightarrow\) \(\frac{4a}{\sqrt{a}-3}=-1\Leftrightarrow4a=3-\sqrt{a}\Leftrightarrow4a+\sqrt{a}-3=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=-1\:\left(loai\right)\\\sqrt{a}=\frac{3}{4}\end{matrix}\right.\: \Leftrightarrow a=\frac{9}{16}\)
Vậy khi a=9/16 thì C=-1