K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 9 2017

Lời giải:

Từ điều kiện đề bài suy ra tồn tại các số \(x,y,z>0\) thỏa mãn:

\((a,b,c)=\left(\frac{x}{y+z},\frac{y}{x+z},\frac{z}{x+y}\right)\)

Khi đó, BĐT cần chứng minh tương đương với:

\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\geq 4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(\Leftrightarrow \left(\frac{x}{y}+\frac{x}{z}\right)+\left ( \frac{y}{x}+\frac{y}{x} \right )+\left ( \frac{z}{x}+\frac{z}{y} \right )\geq 4\left ( \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y} \right )\) \((\star)\)

BĐT trên hiển nhiên đúng do theo BĐT Cauchy-Schwarz thì:

\(\left\{\begin{matrix} x\left ( \frac{1}{y}+\frac{1}{z} \right )\geq \frac{4x}{y+z}\\ y\left ( \frac{1}{x}+\frac{1}{z} \right )\geq \frac{4y}{x+z}\\ z\left ( \frac{1}{y}+\frac{1}{x} \right )\geq \frac{4x}{y+x}\end{matrix}\right.\)

Cộng theo vế thì ta thu được \((\star)\), do đó ta có đpcm

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=\frac{1}{2}\)

19 tháng 9 2017

bài h qua thì dễ mà t thì đến muộn

Bài nay khó z mak t đến sớm là sao z trời :((

24 tháng 6 2017

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

~*~*~*~*~

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)

\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng

=> (1) đúng

24 tháng 6 2017

Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).

đề bài cho như sau : Cho a,b,c > 0 thỏa mãn : ab + bc + ca + 2abc = 1 CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\left(a+b+c\right)\) Cách làm như sau : Từ điều kiện đề bài suy ra tồn tại các số x,y,z >0 thỏa mãn : ( a , b , c ) = \(\left(\dfrac{x}{y+z};\dfrac{y}{x+z};\dfrac{z}{x+y}\right)\) Khi đó , BĐT cần chứng minh tương đương với :...
Đọc tiếp

đề bài cho như sau :

Cho a,b,c > 0 thỏa mãn :

ab + bc + ca + 2abc = 1

CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\left(a+b+c\right)\)

Cách làm như sau :

Từ điều kiện đề bài suy ra tồn tại các số x,y,z >0 thỏa mãn :

( a , b , c ) = \(\left(\dfrac{x}{y+z};\dfrac{y}{x+z};\dfrac{z}{x+y}\right)\) Khi đó , BĐT cần chứng minh tương đương với : \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{z}{y}\right)\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)(*) BĐT trên hiển nhiên đúng do theo BĐT Cauchy-Schwarz thì : \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{4x}{y+z}\) \(y\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{4y}{x+z}\) \(z\left(\dfrac{1}{y}+\dfrac{1}{x}\right)\ge\dfrac{4x}{y+z}\) Cộng theo vế thì ta thu được (*) , do đó ta có đpcm Dấu "=" xảy ra khi x = y = z => a = b = c = 1/2 CHO MÌNH HỎI LÀ MÌNH KHÔNG HIỂU CHỖ hiển nhiên đúng khi cauchy swat làm sao lại lớn hơn hoặc bằng cái đấy , AI GIẢI THÍCH CHO MÌNH VỚI VÀ THÊM CẢ CHỖ ĐẦU BÀI Ý ĐÚNG 1 PHÁT RA X,Y,Z LÀ SAO ? GIẢI THÍCH NHANH SẼ NHẬN GP
2
7 tháng 11 2017

Các CTV , các bn giỏi toán mau giúp mình với

7 tháng 11 2017

bn đâu thể cho GP đc

NV
9 tháng 3 2023

\(a^2+b^2+c^2\ge ab+bc+ca=2\)

Áp dụng BĐT C-S:

\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)

Đặt \(a^2+b^2+c^2=x\)

Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)

\(\Leftrightarrow x\ge2\) (đúng)

Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)

25 tháng 9 2017

Tưởng tìm trên mạng rồi chứ

[Toán 8] Chứng minh | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

25 tháng 9 2017

Nguyễn Huy Tú có thật đây là bài lớp 8 không

19 tháng 9 2023

\(P=\dfrac{1}{bc\left(b+c\right)+2023}+\dfrac{1}{ca\left(c+a\right)+2023}+\dfrac{1}{ab\left(a+b\right)+2023}\left(abc=2023\right)\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}+\dfrac{1}{ab\left(a+b\right)+abc}\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}+\dfrac{1}{ab\left(a+b+c\right)}\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{a^2bc+b^2ca+c^2ab}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{abc\left(a+b+c\right)}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{abc}=\dfrac{1}{2023}\)

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined