Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔADC vuông tại D
=>\(AC^2=AD^2+DC^2\)
=>\(AC^2=8^2+6^2=100\)
=>AC=10(cm)
ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
=>M là trung điểm chung của AC và BD và AC=BD
=>MD=MB=MA=MC=AC/2=5(cm)
Xét ΔDME vuông tại M và ΔDCB vuông tại C có
\(\widehat{MDE}\) chung
Do đó: ΔDME đồng dạng với ΔDCB
=>\(\dfrac{ME}{CB}=\dfrac{DM}{DC}\)
=>\(\dfrac{ME}{6}=\dfrac{5}{8}\)
=>\(ME=3,75\left(cm\right)\)
Theo định lý Ta-let \(\frac{IA}{IC}=\frac{IM}{ID}=\frac{AM}{CD}=\frac{1}{2}\to IA=\frac{1}{2}IC,ID=2IM\to IA=\frac{1}{3}AC,ID=\frac{2}{3}DM.\)
Mà theo định lý Pitago:
\(AC^2=AD^2+DC^2=3a^2,MD^2=\left(\frac{a}{2}\right)^2+\left(a\sqrt{2}\right)^2=\frac{9a^2}{4}\to AC=a\sqrt{3},MD=\frac{3a}{2}\)
Vậy ta có \(IA=\frac{1}{3}\cdot a\sqrt{3}=\frac{a\sqrt{3}}{3},ID=\frac{2}{3}\cdot\frac{3a}{2}=a\to IA+ID=\frac{a\sqrt{3}}{3}+a=\frac{\left(3+\sqrt{3}\right)a}{3}.\)
a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b) Từ a ta có: có AM // BD
⇒ \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒ \(\widehat{A_2}=\widehat{B_1}\)
⇒ \(\widehat{A_1}=\widehat{A_2}\) \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒ △ IEA cân tại I
⇒ \(\widehat{E_1}=\widehat{A_1}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇒ \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC \(\left(3\right)\)
Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒ IP // AC \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) ⇒ EF // IP ⇒ Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\) \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ; \(\widehat{A_1}=\widehat{M_1}\) ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
⇒ \(\dfrac{MF}{DA}=\dfrac{AF}{BA}\) ⇒ \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\) ( không đổi )