K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

Gọi hai số đó là n và n + 1 (n \(\in\) N*)

Ta có :

n . (n + 1) = n2 + n không là số chính phương

Vậy tích 2 số tự nhiên không phải là số chính phương

7 tháng 8 2016

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> xy; zk; ... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

7 tháng 8 2016

                           khó phết                                       hjhj

4 tháng 11 2015

Cau hoi tuong tu nhe 

Ban chi can doi so 5 thanh so 3 roi lam 

Tick nha

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

13 tháng 7 2017

 + ta có số nguyên tố có số lượng ước là 2,đó 1 số chẵn,vậy số đó không thể là số nguyên tố=> số đó là hợp sỗ 
nên ta có thể đặt n = p1^k1.p2^k2...pr^kr (phân tích ra thừa số nguyên tố) 
số ước của n là (k1 + 1)(k2 + 1)..(kr + 1) 
theo đề bài thì (k1 + 1)(k2 + 1)..(kr + 1) là số lẽ 
=> k1,k2,..kr tất cả phải hoàn toàn là số chẵn,bởi vì chỉ cần một ki lẻ thì toàn bộ tích đó là số lẽ 
nghĩa là k1 = 2k1',k2 = 2k2',...,kr = 2kr' 
suy ra n = [p1^k1'.p2^k2'...prkr']^2 là 1 số chính phương

3 tháng 9 2017

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)

là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)

9 tháng 4 2018

A = n n + 1 n + 2 n + 3

= n n + 3 n + 1 n + 2

= n 2 + 3n n 2 + 3n + 2

= n 2 + 3n 2 − 2 n 2 + 3n

= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)