Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
a: Vì trong hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn nên trong hai số tự nhiên liên tiếp, sẽ có một số chia hết cho 2
Gọi ba số tự nhiên liên tiếp là \(n,n+1,n+2\)
Xét n = 3k => n chia hết cho 3 (đpcm)
Xét n = 3k + 1 => n + 2 chia hết cho 3 (3k + 3) (đpcm)
Xét n = 3k + 2 => n + 1 chia hết cho 3 (3k + 3) (đpcm)
Giải tương tự có: Gọi 4 số tự nhiên liến tiếp là: \(n,n+1,n+2,n+3\)
Xét n = 4k => n chia hết cho 4 (4k) (đpcm)
Xét n = 4k + 1 => n + 3 chia hết cho 4 (4k + 4) (đpcm)
Xét n = 4k + 2 => n + 2 chia hết cho 4 (4k + 4) (đpcm)
Xét n = 4k + 3 => n + 1 chia hết cho 4 (4k + 4) (đpcm)
Gọi 3 số tự nhiên liên tiếp là: a; a + 1; a + 2
+ Nếu a = 3k thì a chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)
+ Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)
+ Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)
Như vậy, trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Phần còn lại lm tương tự nhé!
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
cho sửa câu d nhé số tự nhiên liên tiếp là một số ko chia hết cho 4
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3