Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
ta có :5^2015 + 5^2016 + 5^2017
= 5^2015 x (1 + 5 + 5^2)
= 5^2015 x ( 1 + 5 + 25)
= 5^2015 x 31(VÌ CÓ SÓ 31 NÊN CHIA HẾT CHO 31)
CẢM ƠN BẬN ĐÃ CHO MÌNH 1 KIẾN THỨC MỚI
Ta có :
52015 + 52016 + 52017
= 52015 x (1 + 5 + 52)
= 52015 x (1 + 5 + 25)
= 52015 x 31 chia hết cho 31 (ĐPCM)
Ủng hộ mk nha !!! ^_^
b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)
c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
A = 5 + 52 + 53 + ...... + 52016
A = (5 + 52) + (53 + 54) + ....... + (52015 + 52016)
A = 5.(1 + 5) + 53.(1 + 5) + ..... + 52015.(1 + 5)
A = 5.6 + 53.6 + ...... + 52015.6
A = 6.(5 + 53 + ...... + 52015) chia hết cho 6
A = 5 + 52 + 53 + ...... + 52016
A = (5 + 52 + 53) + (54 + 55 + 56) + ...... + (52014 + 52015 + 52016)
A = 5.(1 + 5 + 25) + 54.(1 + 5 + 25) + ....... + 52014.(1 + 5 + 25)
A = 5.31 + 54.31 + ........ + 52014.31
A = 31.(5 + 54 + ...... + 52014) chia hết cho 31
3n + 5 chia hết cho n + 1
3n + 3 + 2 chia hết cho n + 1
3.(n + 1) + 2 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}
=> n = {0 ; -2 ; 1 ; -3}
A) 52018 + 52017 + 52016 = 52016 . (52 + 5 + 1) = 52016 . (25 + 5 + 1) = 52016 . 31
Vì 31 chia hết cho 31 => 52016 . 31 chia hết cho 31
hay 52018 + 52017 + 52016 chia hết cho 31
a,52018+52017+52016=52016(1+5+52)=52016.31
=>52018+52017+52016 chia hết cho 31.
b,1+7+72+73+ ....+7101
=(1+7)+(72+73)+...+(7100+7101)
=1.(1+7)+72.(1+7)+...+7100.(1+7)
=8.(1+72+...+7100)
=>1+7+72+...+7101 chia hết cho 8.
52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31
Vậy 52017 + 52016 + 52015 chia hết cho 31.
Ta có: \(5^3\equiv1\left(mod31\right)\)
=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)
=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)
=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)
=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)
Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)