Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.
Không thể được đâu bạn ơi, giả sử như n = 2, thay vào phân số trên sẽ được kết quả là 8/9 >> không phải là phân số tối giản.
gọi ƯC( 3n+2 và 4n+1) là d
suy ra 3n+2 chia hết cho d và 4n+1 chia hết cho d
suy ra ( 3n+2) - ( 4n +1) chia hết cho d
4(3n+2) - 3(4n+1)chia hết d
12n+8- 12n-3 chia hết d
8-3 chia hết d
5 .............
Vì 3n+2vs 4n+1 là 2 số nguyên tố cung nhau
suy ra d=1
Vậy...............
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
Câu 1
=> 38-x=0 hoặc x+25=0
TH1
38-x=0
x=38
TH2
x+25=0
x=-25
Vậy x e { 38;-25}
Câu 2
= 4544 + 32 . (-7 - 13)
= 4544 + 32 . (-20)
= 4544 + (-640)
= 3904
@minhnguvn
Câu 1 :
\(\left(38-x\right).\left(x+25\right)=0\)
\(\orbr{\begin{cases}38-x=0\\x+25=0\end{cases}}\)
\(\orbr{\begin{cases}x=38\\x=-25\end{cases}}\)
Câu 2 :
\(71.64+32.\left(-7\right)-13.32\)
\(=4544+32.\left(-7\right)-13.32\)
\(=4544+32.\left(\left(-7\right)-13\right)\)
\(=4544+32.20\)
\(=4544+52\)
\(=4596\)
Đặt A=22+23+..+22005
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
C=22006 .Là lũy thừa của 2 (đpcm)
( x - 140) : 7 = 3^ 3 - 2^3. 3
( x - 140) : 7 = 27 - 24
( x - 140) : 7 = 3
( x - 140) = 3.7
( x - 140) = 21
x = 21 + 140
x = 161
(x-140):7=27-24
(x-140):7=3
x-140=21
x=161
Vì 1/6<1/5;1/7<1/5:1/8<1/5;1/9<1/5
=>1/5+1/6+1/7+1/8+1/9<1/5.2=1(1)
Vậy 1/5+1/6+1/7+1/8+1/9<1
Lại có: 1/10<1/8;1/11<1/8;1/12<1/8;1/13<1/18;1/14<1/8;1/15<1/8;1/16<1/8;1/17<1/8
=>1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17<1/8.8=1
Vậy 1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17<1(2)
Từ (1) và (2)
=>1/5+1/6+1/7+...+1/17<2
Vậy 1/5+1/6+1/7+...+1/17<2