K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Ta có:\(\left(n+2\right)\left(n+2017\right)=\left(n+2\right)\left(n+1\right)+2016.\left(n+2\right)\)

Vì (n+2)(n+1) là tích hai số tự nhiên liên tiếp nên (n+2)(n+1)\(⋮\)2 mà 2016.(n+2)\(⋮2\)nên \(\left(n+1\right).\left(n+2\right)+2016.\left(n+2\right)⋮2\) nên \(\left(n+2\right)\left(n+2017\right)⋮2\)

15 tháng 8 2016

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2

Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2

Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2

Bài 4 bạn ghi thiếu đề

16 tháng 8 2016

1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số  chia hết cho 5 ?

2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?

3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?

4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

26 tháng 10 2015

*Xét n lẻ=>n+5 chẵn=>n+5 chia hết cho 2

=>n.(n+5) chia hết cho 2

*Xét n chẵn=>n chia hết cho 2

=>n.(n+5) chia hết cho 2

Vậy n.(n+5) chia hết cho 2

26 tháng 10 2015

Coi n = 2k với k \(\in\) N thì n.(n + 5) = 2k . (2k + 5)

Nếu 2k là lae thì (2k +5) = 1 số chẵn => 1 số chẵn \(\times\) 1 số chẵn = 1 số chẵn chia hết cho 2

Nếu 2k là chẵn thì (2k + 5) = 1 số lẻ => 1 số chẵn \(\times\) 1 số lẻ = 1 số chẵn chia hết cho 2

Vậy với mọi n thì n.(n + 5) đều chia hết cho 2.

26 tháng 7 2018

Xét số n trong các trường hợp :

+ n là số lẽ :   \(\left(n+3\right)\): chẵn ;  \(\left(n+6\right)\)lẻ \(\Rightarrow\left(n+3\right).\left(n+6\right)⋮2\)

+ n là số số chẵn : \(\left(n+3\right)\): lẽ ;  \(\left(n+6\right)\): chẵn \(\Rightarrow\left(n+3\right).\left(n+6\right)⋮2\)

Vậy với mọi số tự nhiên n thì ( n+ 3 ) . ( n+6 ) đều chia hết cho 2

   

26 tháng 7 2018

(n+3).(n+6)

Xét:

-n là 1 số lẻ

=>n+3 chẵn =>(n+3).(n+6) chẵn =>(n+3).(n+6)\(⋮\)2

-n là 1 số chẵn

=>n+6 chẵn =>(n+3).(n+6) chẵn =>(n+3).(n+6)\(⋮\)2

Vậy với mọi n thì tích (n+3).(n+6) chia hết cho 2

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

28 tháng 10 2020

a,

+ nếu n \(⋮\) 2 \(\Rightarrow n\left(n+5\right)⋮2\)

+ nếu 2 chia 2 dư 1

=> n có dạng 2k+1

=> n(n+5) = (2k+1)(2k+6) = 2(2k+1)(k+3) \(⋮2\)

=> \(n\left(n+5\right)⋮2\forall n\)

vậy.....

b, \(A=4+4^2+4^3+...+4^{2019}\)

\(4A=4^2+4^3+4^4+...+4^{2020}\)

\(3A=4^{2020}-4\)

\(A=\frac{4^{2020}-4}{3}\)

vậy.......

28 tháng 10 2020

bạn làm có đúng ko đó

27 tháng 7 2017

Sai đề rồi nhé!

ta có: M=n^3+3n^2+2n=2n(n+1)+n^2(n+1)=n(n+1)(n+2)

ta thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp

=>tồn tại 1 số chia hết cho 2(vì n(n+1) là tích 2 số nguyên liên tiếp) (với n thuộc Z)

tồn tại 1 số chia hết cho 3( vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)

=>n(n+1)(n+2) chia hết cho 2.3(vì (2;3)=1)

=>n(n+1)(n+2) chia hết cho 6

=>n^3+3n^2+2n chia hết cho 6

có chỗ nào ko hiểu thì hỏi mk nhé

 

29 tháng 1 2016

chia hết cho bao nhiêu???

6 tháng 5 2018

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

6 tháng 5 2018

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27