K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt D là UCLN(21n+4;14n+3)

=> 21n+4 chia hết cho D => 2(21n+4) chia hết cho D => 42n+8 chia hết cho D

=> 14n+3 chia hết cho D => 3(14n+3) chia hết cho D => 42n+9 chia hết cho D

Ta có : (42n+9)-(42n+8) chia hết cho D =>1 chia hết cho D => D=1 =>  21n+4/14n+3 là phân số tối giản 

3 tháng 3 2020

Gọi d là ƯCLN (21n+4; 14n+3) (d thuộc N*)

=> 21n+4 và 14n+3 chia hết cho d

=> 2(21n+4) và 3(14n+3) chia hết cho d

=> 42n+8 và 42n+9 chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 1 chia hết cho d vì d thuộc N*

=> d=1

=> đpcm

27 tháng 11 2017

Đặt d = ƯCLN( 14n + 3, 21n + 5 ) ( d ∈ N* )

Ta có: 14n + 3 ⋮ d và 21n + 5 ⋮ d

⇒ 3( 14n + 3 ) ⋮ d và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d

⇒ ( 42n + 9 ) – ( 42n + 10 ) ⋮ d ⇒ 1 ⋮ d . Do đó d = 1  

Vậy 14 n + 3 21 n + 5  là phân số tối giản

12 tháng 1 2018

18 tháng 12 2019

Đặt d = ƯCLN( 14n + 3, 21n + 5 ) ( d ∈ N* )

Ta có: 14n + 3 ⋮ d và 21n + 5 ⋮ d

⇒ 3( 14n + 3 ) ⋮ d và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d

⇒ ( 42n + 9 ) – ( 42n + 10 ) ⋮ d ⇒ 1 ⋮ d . Do đó d = 1

 Đề kiểm tra Toán 6 | Đề thi Toán 6 là phân số tối giản.

4 tháng 4 2017

Gọi d là \(ƯCLN\left(4n+1;14n+3\right)\) nên ta có :

\(4n+1⋮d;14n+3⋮d\)

\(\Leftrightarrow7\left(4n+1\right)⋮d\) và \(2\left(14n+3\right)⋮d\)

\(\Leftrightarrow28n+7⋮d\) và \(28n+6⋮d\)

\(\Rightarrow\left(28n+7\right)-\left(28n+6\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì \(ƯCLN\left(4n+1;14n+3\right)=1\) nên \(\frac{4n+1}{14n+3}\) tối giản (ĐPCM)

4 tháng 4 2017

ai thấy tên mk thì kết với mk nha !!!

DD
8 tháng 11 2021

Đặt \(\left(14n+3,21n+5\right)=d\).

Suy ra 

\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

23 tháng 4 2023

Khó dữ zậy

Gọi \(d=ƯC\left(14n+17;21n+25\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(14n+17;21n+25\right)=1\)

hay phân số \(B=\dfrac{14n+17}{21n+25}\) là phân số tối giản(Đpcm)

5 tháng 5 2019

   Gọi d = ƯCLN ( 14n + 3 , 21n + 5 ) 

Xét hiệu :

   \(\left(21n+5\right)-\left(14n+3\right)⋮d\)

   \(2\left(21n+5\right)-3\left(14+3\right)⋮d\)

   \(42n+10-42n-9⋮d\)

                     \(10-9⋮d\)

                               \(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)

                                         Vậy....

                                                       #Louis

5 tháng 5 2019
To cung giong ban
1 tháng 5 2021

Giả sử UCLN(14n+3;21n+5)=d

14n+3 chia hết cho d nên 42n+9 chia hết cho d

21n+5 chia hết cho d nên 42n+10 chia hết cho d

vay 1 chia hết cho d, d=1

Vậy phân số tối giản

Giải:

Gọi ƯC(14n+3;21n+5)=d

⇒14n+3 ⋮ d              ⇒3.(14n+3) ⋮ d            ⇒42n+9 ⋮ d

    21n+5 ⋮ d                2.(21n+5) ⋮ d               42n+10 ⋮ d

⇒(42n+10)-(42n+9) ⋮ d

⇒   1 ⋮ d

⇒d=1

Vậy 14n+3/21n+5 là phân số tối giản.

Chúc bạn học tốt!

14 tháng 3 2017

Đúng ko ạk

23 tháng 4 2017

đề bài sai rôi