K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

fgtyeffetf

16 tháng 6 2019

                                                                            Giải:

Giả sử 

\(x_1,x_2,x_3,.....,x_k\)là k có giá trị khác nhau về biến lượng

\(m_1,m_2,m_3,...,m_k\)là k tần số tương ứng.

Ta có: \(n=m_1+m_2+m_3+...+m_k\)

Suy ra: \(\overline{x}=\frac{x_1m_1+x_2m_2+....+x_km_k}{n}\)

Giả sử a là số được cộng thêm vào mỗi biến lượng.

Vậy giá trị của các biến lượng là: \(\left(x_1+a\right),\left(x_2+a\right),...\left(x_k+a\right)\)

Khi đó:

\(\overline{X}=\frac{\left(x_1+a\right)m_1+\left(x_2+a\right)m_2+....+\left(x_k+a\right)m_k}{n}\)

  \(=\frac{x_1m_1+x_2m_2+...+x_km_k+\left(m_1+m_2+..+m_k\right)a}{n}\)

    \(=\frac{x_1m_1+x_2m_2+x_3m_3+...+x_km_k+na}{n}\)

   \(=\frac{x_1m_1+x_2m_2+x_3m_3+...+x_km_k}{n}+a=\overline{x}+a\left(đpcm\right)\)