Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu tra trên google ấy , **** tớ cái nha !
nếu ko thấy trên googlle thì để tớ giúp nhưng cậu phải **** cho tớ đã
Ta có:a/b<c/d =>ad<bc (1)
Thêm ab vào (1) ta đc:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (1), ta lại có:
ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
ta co:a/b<c/d
=>ad<bc
=>ad+ab<bc+ab
=>a(b+d)<b(a+c)
=>a/b<(a+c/b+d) (1)
co ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d (2)
tu (1) va (2) =>dpcm
vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)mà áp dụng tính chất day tỉ số bằng nhau ta có \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\) ; \(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)
vì \(\frac{a}{c}=\frac{b}{d}\)mà\(\frac{c}{a}=\frac{b}{d}\)=>\(\frac{a}{c}=\frac{c}{a}\)=>a.a=c.c=>\(a^2\)=\(c^2\)=>a=c
Vậy nếu\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì a=c
Vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) , Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)
\(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)
Vì \(\frac{a}{c}=\frac{b}{d}\) mà \(\frac{c}{a}=\frac{b}{d} \Rightarrow\frac{a}{c}=\frac{c}{a} \Rightarrow a.a=c.c=a^2.c^2 \Rightarrow a=c\)
Vậy : \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì \(\Leftrightarrow a=c\)
Ta có:
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và