Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P > 3 => P = 3k + 1 hoặc P = 3k + 2 (k thuộc N) (vì P là số nguyên tố)
+) P = 3k + 1 => P + 8 = 3k + 9 chia hết cho 3 => P + 8 là hợp số
+) P = 3k + 2 => P + 4 = 3k + 6 chia hết cho 3 => P + 4 là hợp số (loại)
Vậy P + 8 là hợp số
Ta có:
\(n^2\ge0\forall n\inℤ\)\(\Rightarrow n^2+5\ge5\forall n\inℤ\)\(\Rightarrow n^2+5>0\forall n\inℤ\)
\(\Rightarrow n^2+5\ne0\forall n\inℤ\)(1)
Xét phân số M = \(\frac{n-2}{n^2+5}\left(n\inℤ\right)\)
Vì ta có (1) nên M luôn tồn tại
Vậy M luôn tồn tại với mọi \(n\inℤ\)p
Chú ý : Một phân số luôn tồn tại ( hay được xác định) khi mẫu số của nó khác 0.
Phân số M không tồn tại khi n2+15 =0 => n2= -15(vô lý vì bình phương của 1 sô nguyên luôn không âm).Do đó,n2+15 luôn khác 0 nên phân số M luôn tồn tại.
a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0
=> A luôn tồn tại
b) bn chỉ việc thay n rùi tính A là ra
Có : 2015^n có tận cùng là 5
2^2015 = 2^3.2^2012 - 8.(2^4)^503 = 8.16^503 = 8. ....6 = ....8
Vì m^2 là số chính phương nên m^2 ko có tận cùng là 7
=> A ko có tận cùng là : 0 ( vì 5+8+7 = 20 )
=> A ko chia hết cho 10
=> đpcm
Tk mk nha