K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...

Gọi hai góc kề bù là góc AOC và góc BOC, gọi OD,OE lần lượt là phân giác của góc AOC và góc BOC

OD là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{COD}\)

OE là phân giác của góc BOC

=>\(\widehat{BOC}=2\cdot\widehat{EOC}\)

Ta có: \(\widehat{AOC}+\widehat{BOC}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{COD}+\widehat{COE}\right)=180^0\)

=>\(2\cdot\widehat{DOE}=180^0\)

=>\(\widehat{DOE}=90^0\)

21 tháng 6 2016

 * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

28 tháng 8 2015

B O C A N M

Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC 

Chứng minh góc MON = 90 độ

Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB

Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC 

Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC 

Suy ra : OB nằm giữa hai tia OM và ON nên :

góc MON = góc MOB + góc BON

               = 1/2 * ( góc AOB + góc BOC )

               = 1/2 * 180 độ = 90 độ

31 tháng 3 2018

Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC  Chứng minh góc MON = 90 độ Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC  Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC  Suy ra : OB nằm giữa hai tia OM và ON nên : góc MON = góc MOB + góc BON                = 1/2 * ( góc AOB + góc BOC )                = 1/2 * 180 độ = 90 độ

29 tháng 8 2021

Tham khảo link này nhé ^^ 

https://h7.net/hoi-dap/toan-7/hai-tia-phan-giac-cua-hai-goc-ke-bu-vuong-goc-voi-nhau-faq25757.html

28 tháng 7 2016

\(Góc\)\(kề\)\(bù\)\(có\)\(số\)\(đo=90^0\)

\(2\)\(góc\)\(kề\)\(bù\)\(\Rightarrow mỗi\)\(góc=90^0\)

\(Tia\)\(phân\)\(giác\)\(của\)\(1\)\(góc\)\(kề\)\(bù=90^0:2=45^0\)

\(\Rightarrow Tia\)\(phân\)\(giác\)\(của\)\(2\)\(góc\)\(kề\)\(bù=45^0+45^0=90^0\)

28 tháng 7 2016

 thấy: xOy + yOz = 1800

=>1/2 xOy + 1/2 yOz = 1/2(xOy+yOz)=1/2 xOz=1/2 x 180 dộ

=90 độ

Vậy hai tia phân giác của 2 góc kề bù thì vuông góc với nhau

xOzy

 
13 tháng 10 2017

hai góc đối đỉnh

2 tháng 4 2021

1,Cho 2 góc xOy và yOz kề bù .

Om ; On lần lượt là tia phân giác của 2 góc đó 

{ˆO1=ˆO2=12.ˆxOyˆO3=ˆO4=12.ˆyOz⇒{O1^=O2^=12.xOy^O3^=O4^=12.yOz^

ˆO2+ˆO3=12(ˆxOy+ˆyOz)=12.1800=900⇒O2^+O3^=12(xOy^+yOz^)=12.1800=900

=> Đpcm

2 tháng 4 2021

2,

Ta có:

   mOy+nOy=90omOy+nOy=90o( gt )

xOm+zOn=90o⇒xOm+zOn=90o

Mà xOm=mOyxOm=mOy( Om là tia phân giác góc xOy )

nOy=zOn⇒nOy=zOn

On là tia phân giác góc yOz.

5 tháng 4 2018

Xét Om và On thứ tự là tia phân giác của hai góc kề bù x O z ^  và z O y ^ .

Ta có: x O z ^ + z O y ^ = 180 0  (hai góc kề bù)

Mà Om là tia phân giác của   x O z ^ => x O z ^ = 2 m O z ^  

On là tia phân giác của z O y ^ ⇒ z O y ^ = 2 n O z ^  

 

Do đó: 2 m O z ^ + 2 n O z ^ = 180 0  

⇒ m O z ^ + n O z ^ = 90 0

⇒ m O n ^ = 90 0 ⇒ O m ⊥ O n  

Vậy hai tia phân giác của hai góc kề bù thì vuông góc với nhau

27 tháng 6 2015

Gọi x0y và y0z là hai góc kề bù , ot là pg x0y ; 0t' là p/g của y0z

Ta có 

y0t = 1/2 x0y ( ot là p/g)  (1)

y0t' = 1/2 y0x ( 0t' là p/g)  (2)

x0y + y0z = 180 độ ( kề bù)

Từ (1) và (2) => y0t + yot' = 1/2 ( xoy+ y0z) = 1/2 .180 = 9 0 độ 

=> t0t' = 90 đọ 

hay 0t vuông góc với 0t' => ĐPCM

27 tháng 6 2015

Ot là phân giác góc yOz =>zOt=1/2 yOz

Oo là phân giác góc xOz=>zOo=1/2 xOz

Mà xOz+yOz=1800

=>ZOo+zOt=1/2(xOz+yOz)=1/2.1800=900

=>Ot vuông góc với Oo

Vậy 2 tia phân giác của 2 góc kề bù tạo thành 1 góc vuông

28 tháng 7 2016

 * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

27 tháng 7 2017

góc tù thua góc nhọn ,góc nhọn thua góc vuông ,góc vuông thua góc bẹt, góc bẹt góc thua góc bè góc bè thua góc nhọn

27 tháng 7 2017

Gọi xOy và yOz là hai góc kề bù.Ot là phân giác của xOy, Ot' là phân giác của yOz

Ta có:

yOt =1/2 xOy( ot phân giác) (1)

yOt'=1/2 yOx ( ot' phân giác) (2)

xOy+ yOz = 180o( kề bù)

Từ (1) và (2) => yOt+ yOt'=1/2(xOy+yOz)=1/2.180=90o

=>tOt' =90o hay Ot vuông góc với Ot' 

=> ĐPCM