Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2 (1)
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3
= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3
⇒ A ⋮ 6
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow a=1\)
Vậy: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Gọi \(ƯC\left(2n+1;3n+2\right)=d\left(d\in N\right)\)
\(2n+1⋮d,3n+2⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n-3⋮d\)
\(1⋮d\).Do đó d = 1
Vậy 2n + 1 và 3n + 2 là 2 số nguyên tố cùng nhau nên \(BCNN\left(2n+1;3n+2\right)=\left(2n+1\right)\left(3n+2\right)\)