Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.
Lời giải:
Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.
Gọi số đó là $d$.
Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$
$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản.
Gọi d là UCLN ( 7n+4 và 5n + 3 )
Vậy \(5n+3⋮d\)và \(7n+4⋮d\)
\(\Rightarrow7\left(5n+3\right)⋮d\)và \(5\left(7n+4\right)⋮d\)
\(\Leftrightarrow35n+21⋮d\)và \(35n+20⋮d\)
\(\Rightarrow35n+21-\left(35n+20\right)⋮d\)
Hay \(1⋮d\)\(\Rightarrow d=1\)hoặc \(-1\)
Vì UCLN(5n+3 va 7n + 4 ) nên \(\frac{7n+4}{5n+3}\)tối giản với mọi n
k mink nha
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)
={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản