K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

\(A=\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)\)

+Chứng minh chia hết cho 3

1 số bất kì khi chia cho 3 sẽ có 1 trong 3 số dư: 0; 1; 2
=> Trong 4 số a, b, c, d tồn tại ít nhất 2 số có cùng số dư khi chia cho 3 (cùng dư 0, hoặc 1, hoặc 2)
=> Hiệu 2 số đó chia hết cho 3 (chẳng hạn a và b cùng dư 2 khi chia cho 3 => a - b chia hết cho 3)
=> Tích "dài dài" chia hết cho 3

+Chứng minh chia hết cho 4:

+TH1: 4 số đều chẵn
=> Tất cả các nhân tử đều chẵn (số chẵn trừ số chẵn = số chẵn)
=> A chia hết cho 2.2.2.2.2.2 = 64
=> A chia hết cho 4.

+TH2: 3 số chẵn và 1 số lẻ (giả sử a, b, c chẵn và d lẻ).
=> (a-b); (a-c); (b-c) đều chẵn.
=> A chia hết cho 2.2.2 = 8.
=> A chia hết cho 4.

+TH3: 2 số chẵn và 2 số lẻ (giả sử a và b chẵn; c và  lẻ)
=> (a-b) và (c-d) đều chẵn (số lẻ trừ số lẻ = số chẵn)
=> A chia hết cho 2.2 = 4

TH4: 1 số chẵn và 3 số lẻ (giả sử a, b, c lẻ và d chẵn).
=> (a-b); (a-c); (b-c) đều chẵn. (lẻ trừ lẻ = chẵn)
=> A chia hết cho 2.2.2 = 8.
=> A chia hết cho 4.

+TH5: 4 số đều lẻ
=> Tất cả các nhân tử đều chẵn (lẻ trừ lẻ = chẵn)
=> A chia hết cho 2.2.2.2.2.2 = 64
=> A chia hết cho 4.

=> A luôn chia hết cho 4.

Vậy: A luôn chia hết cho cả 3 và 4.

a,  b : 7 dư 4 ; c chia 7 dư 3 mà 4 + 3 = 7 chia hết cho 7 

=> b+c chia hết cho 7 

b, ( tương tự dựa vào đó mà lm nhé mày ) biết chưa quỷ cái

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

23 tháng 5 2022

ko bt

 

28 tháng 1 2018

a) \(a\cdot\left(b-c\right)-a\cdot\left(b+d\right)\)

\(=a\cdot b-a\cdot c-a\cdot b+a\cdot d\)

\(=0-a\cdot\left(c+d\right)\)

\(=-a\cdot\left(c+d\right)\)

28 tháng 1 2018

Cảm ơn bn , thế bn ko bt lm mấy câu sau hả ??

22 tháng 2 2020

A+B=a+b-5+(-b-c+1)=a+b-5-b-c+1=a-c-4  (1)

C-D=b-c-4-(b-a)=b-c-4-b+a=a-c-4  (2)

từ (1) và (2) suy ra A+B=C-D

22 tháng 2 2020

Em cảm ơn cô