K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

khó z mà vẫn đăg

28 tháng 11 2017

Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d

           6n+5 chia hết d

= 3.(2n+1) chia hết d

6n+5 chia hết d

=6n+3 chia hết d

6n+5 chia hết d

(6n+5)-(6n+3) chia hết d

=2 chia hết d

d=1;2

Mà 6n+5 không chia hết 2; suy ra d=1

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

kick hộ mình nhé

23 tháng 11 2015

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

1 tháng 3 2015

Gọi ƯCLN (2n+1,6n+1)=d.

Suy ra 2n+1 chia hết cho d và 6n+1 chia hết cho d.

Suy ra 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d.

Suy ra (6n+3)-(6n+1) chia hết cho d.

Suy ra 2 chia hết cho d hay d=1 hoặc 2.

Mà 2n+1 không chia hết cho 2 vì 2n+1 là số lẻ. Suy ra d=1.

Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.

 

25 tháng 3 2021

đừng để anh nóng hơi mệt đấy

31 tháng 12 2017

gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d

Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\in\){ 1 ; 2 }

d là ước của số lẻ 2n + 1 nên d \(\ne\)

Vậy d = 1 

Do đó ( 2n + 1 ; 6n + 5 ) = 1

25 tháng 3 2021

chu pa pi mu nhà nhố

27 tháng 10 2023

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

7 tháng 3 2020

Gọi d là ƯCLN (2n+1;6n+5)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}}}\)

=> (6n+5)-(6n+3) chia hết cho d

=> 2 chia hết cho d 

=> d={1;2}

Vì 2n+1 là số lẻ => 2n+1 không chia hết cho 2

=> d=1

Gọi ƯCLN(2n+1;6n+5) là d

Có \(2n+1⋮d\)

\(6n+5⋮d\)

=> \(3\left(2n+1\right)⋮d\)

\(6n+5⋮d\)

=>\(6n+3⋮d\)

\(6n+5⋮d\)

=>\(\left(6n+5\right)-\left(6n+3\right)\)\(⋮\)d

=>2 chia hết cho d

=> d thuộc Ư(2)={1;2}

Vì 2n+1 lẻ nên d khác 2

=> d bằng 1

Vậy....

21 tháng 11 2016

gọi (2n+3,6n+8)=d

=>d là ước của 3(2n+3)=6n+9

Mà d cũng là ước của 6n+8

=>d là ước của (6n+9)-(6n+8)=1

=>d=1

=> (2n+3,6n+8)==1 (đpcm)

28 tháng 11 2016

chuẩn chính xác!cảm ơn