K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s

26 tháng 1 2016

bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh

5 tháng 4 2020

Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

Vì n là số nguyên khác 0; - 1

=> \(\frac{1}{n+1}\)không là số nguyên

=> \(Q=1-\frac{1}{n+1}\)không là số nguyên

5 tháng 4 2020

Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh  cũng cần cách  này ;

\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

rồi bắt đầu làm như cô Nguyễn Linh Chi

28 tháng 11 2017

-a < a

a > 0

24 tháng 11 2014

Gọi ƯCLN(3n+4;n+1) là d.

=>3n+4 chia hết cho d và n+1 chia hết cho d.

=>3.(n+1) chia hết cho d

=>3n+4    ___________d và 3n+3 chia hết cho d

=>(3n+4)-(3n+3) chia hết cho d

=>1 chia hết cho d

=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.

 

21 tháng 5 2019

Ta có A = 1 + 2 +3 + ... + n

             = n(n+1) : 2

lại có n(n+1) là tích chẵn

=> n(n+1) \(⋮\)2

=> a \(⋮\)2

=> a chẵn 

mặt khác, 2n + 1 \(⋮̸\)2

=> 2n + 1 là số lẻ

=> b lẻ

Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1

=> chúng là 2 số nguyên tố cùng nhau

tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)

29 tháng 1 2016

Em mới hc lpws nam

29 tháng 1 2016

khong biet cau tra loi

11 tháng 3 2018

Gọi UCLN(3n+2,n+1) = d

Ta có: 3n+2 chia hết cho d 

n+1 chia hết cho d => 3n+3 chia hết cho d

=>3n+3-(3n+2) chia hết cho d

=>1 chia hết cho d

=> d = 1

=> UCLN(3n+2,n+1) = 1

Vậy......

11 tháng 3 2018

ta có A\(=\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{1}{n+1}=3\)\(+\frac{1}{n+1}\)

Do 1 ko chia hết cho bất kì số nào thuộc Z ngoại trừ 1 và -1

=> \(\frac{1}{n+1}\)tối giản => A tối giản

28 tháng 1 2017

\(ab-ac+bc=c^2-1\)

\(\Rightarrow ab-ac+bc-c^2=-1\)(quy tắc chuyển vế)

\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Rightarrow\left(a+c\right)\left(b-c\right)=-1\)

Mà \(-1=\left(-1\right)\times1\) hoặc \(1\times\left(-1\right)\)

\(\Rightarrow\left(a+c\right)=-1;\left(b-c\right)=1\)         (1)

hoặc \(\left(a+c\right)=1;\left(b-c\right)=-1\)      (2)

Xét (1), ta có:

\(a+c=-1\)                                   \(b-c=1\)

\(a=\left(-1\right)-c\)                              \(b=1+c\)

\(a=\left(-1\right)+\left(-c\right)\)     

\(a=-\left(1+c\right)\)

Từ đó ta có \(\frac{a}{b}=\frac{-\left(1+c\right)}{1+c}=-1\)

Xét (2), ta có:

\(a+c=1\)                  \(b-c=-1\)

\(a=1-c\)                  \(b=\left(-1\right)+c\)

\(a=1+\left(-c\right)\)         \(b=+\left(c-1\right)\)

\(a=-\left(c-1\right)\)

Từ đó ta có \(\frac{a}{b}=\frac{-\left(c-1\right)}{+\left(c+1\right)}=-1\)

Từ kết quả của hai trường hợp (1) và (2), ta có:

\(\frac{a}{b}=-1\)

Vậy \(\frac{a}{b}=-1\)

P/S: Những kết quả của a và b ở mỗi trường hợp là áp dụng quy tắc ( ghi nhớ ) trong SGK nha bạn.

21 tháng 6 2020

Bài làm:

Ta có: Xét bất đẳng thức sau:

\(\left(x-y\right)^2\ge0\left(\forall x\right)\)\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow x+y\ge2\sqrt{xy}\)

Áp dụng bất đẳng thức trêm vào biểu thức:

\(\frac{a}{a+1}+\frac{a+1}{a}\ge2\sqrt{\frac{a}{a+1}.\frac{a+1}{a}}=2.1=2\)

\(\Rightarrow\frac{a}{a+1}+\frac{a+1}{a}\ge2\)

Học tốt!!!!