K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

ban chi can tra loi:biet roi thi chung minh lam gi cho met nguoi

29 tháng 11 2016

Gọi 2 số lẻ liên tiếp là n+1 và n+3

Đặt ƯCLN(n+1,n+3) là d

=> n+1 chia hết cho d 

     n+3 chia hết cho d

=> (n+3) - (n+1) chia hết cho d

=> n+3 - n - 1 chia hết cho d

=> 2 chia hết cho d

=> d \(\in\){1;2}

Mà n+1 và n+3 là số lẻ nên d \(\ne\)2

=> d = 1

=> ƯCLN(n+1,n+3) = 1 

=> n+1 và n+3 là 2 số nguyên tố cùng nhau

Vậy 2 số lẻ liên tiếp 2 số nguyên tố cùng nhau

23 tháng 3 2017

gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

đặt(2k+1,2k+3)=d 

ta phải c/m d=1

thật vậy : 2k+1chia hết cho d

2k+3 chia hết cho d

suy ra(2k+3)-(2k+1)chia hết cho d

suy ra:2 chia hết cho d

suy ra: d=1hoặc 2 

nhưng d khác 2 vì d là ước của số lẻ 

suy ra:d=1

23 tháng 3 2017

=1 nha bn

chtt điNguyễn Thi Hạnh

28 tháng 12 2015

dễ, gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3 (k thuộc N)

gọi d là UCLN(2k+1;2k+3) suy ra:2k+1chia hết cho d;2k+3 chia hết cho d suy ra : (2k+3)-(2k+1) chia hết cho d suy ra: 2 chia hết cho d suy ra d thuộc tập hợp Ư(2) suy ra d thuộc {1;2}

nhưng vì 2k+1;2k+3 là số lẻ nên không chia hết cho 2 suy ra d=1

VẬY:HAI SỐ LẺ LIÊN TIẾP NGUYÊN TỐ CÙNG NHAU

 

23 tháng 4 2017

Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d

\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d

\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d

\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2

Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)

\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1

Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

21 tháng 11 2014

Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3 

Gọi ƯCLN(2k + 1 ; 2k + 3) = d (d \(\in\)N*)

Ta có : 

2k + 1 chia hết cho d 

2k + 3 chia hết cho d 

\(\Rightarrow\) (2k + 3) - (2k + 1) chia hết cho d \(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)d\(\in\)Ư(2) = {1 ; 2}

Mà d là ước của số lẻ nên d \(\ne\)2 . 

\(\Rightarrow\)d = 1

Vậy 2 số TN lẻ liên tiếp là hai số nguyên tố cùng nhau

6 tháng 12 2021

Tham Khảo

undefined

6 tháng 12 2021

Tham khảo

Câu hỏi của Clean Master - Toán lớp 6 - Học trực tuyến OLM

6 tháng 12 2021

Tham khảo

https://olm.vn/hoi-dap/detail/6225335775.html

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

Hôm kia

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau