K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

toán chứng minh dễ mà bn

25 tháng 10 2016

tek bn lm i

25 tháng 10 2016

a)đặt tên biểu thức là C . Ta có :
C =  1 + 4 + 42 + 43 + ... + 42012 

C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )

C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )

C = 21 + 43 . 21 + ... + 42010 . 21

C = 21 . ( 1 + 43 + ... + 42010 ) 

=> C chia hết cho 21

b) đặt tên biểu thức là B . Ta có :

B =  1 + 7 + 72 + ... + 7101

B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )

B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )

B = 8 + 72 . 8 + ... + 7100 . 8

B = 8 . ( 1 + 7+ ... + 7100 )

=> B chia hết cho 8

tương tự

24 tháng 10 2023

ko bt lm

 

4 tháng 8 2015

1, 

a, Ta có: A = 2 + 22 + 23 +.......+ 210

= ( 2 + 22 ) + ( 23 + 24 ) +...... + ( 29 + 210 )

= 6 + 23 . ( 2 + 22 ) +... + 29 . ( 2 + 22 )

= 6 + 23 . 6 + ......... + 29 . 6

= 6 . ( 2 + 22 + 23 +......+ 29 ) chia hết cho 3 ( Vì 6 chia hết cho 3, nên 6k chia hết cho 3 )

=>   A chia hết  cho 3

b, Tương tự ta làm tiếp với ý b

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg

12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he

31 tháng 10 2021

\(A=2+2^2+2^3+...+2^{100}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{98}.6\)

\(A=6\left(1+2^2+...+2^{98}\right)\)

Có : \(6⋮6\)

\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)

\(\Rightarrow A⋮6\)

11 tháng 10 2022

suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

 

29 tháng 10 2021

Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100

A = (2 + 22) + (23 + 24) + ... + (299 + 2100)

A = 6 + 22(2 + 22) + .... + 298(2 + 22)

A = 6 + 22.6 + ... + 298.6

A = 6.(1 + 22 + ... + 2986
Em lớp 5, sai thì bỏ qua cho em nhé ^^!

29 tháng 10 2021

\(A=2+2^2+2^3+...+2^{100}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{98}.6\)

\(A=6\left(1+2^2+...+2^{98}\right)\)

Mà \(A=6\left(1+2^2+...+2^{98}\right)⋮6\)

\(\Rightarrow A⋮6\)