Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+...+3^{97}.13\)
\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)
Vậy...
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)
\(A=3\cdot13+...+3^{97}\cdot13\)
\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)
A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^97+3^98+3^99)
A=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^97.(1+3+3^2)
A=3.13+3^4.13+...+3^97.13
A=13.(3+3^4+...+3^97) chia hết cho 13
\(A=3+3^2+3^3+....+3^{99}\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{97}.\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+....+3^{97}.13\)
\(A=13.\left(3+3^4+....+3^{97}\right)\)
\(\Leftrightarrow A⋮13\)
Vậy: \(A⋮13\)
Nhớ k cho mình nhé! Thank you!!!
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a)Ta có:A=3+32+33+...+318
=(3+32)+(33+34)+...+(317+318)
=3(1+3)+33(1+3)+...+317(1+3)
=3.4+33.4+...+317.4
Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4
hay A\(⋮\)4
Ta có:A=3+32+33+...+318
=(3+32+33)+(34+35+36)+...+(316+317+318)
=3(1+3+32)+34(1+3+32)+...+316(1+3+32)
=3.13+34.13+...+316.13
Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13
hay A\(⋮\)13
Vậy A chia hết cho 4, 13.
A=3+32+33+...+318
A=(3+32)+(33+34)+...+(317+318)
A=3(1+3)+33(1+3)+...+317(1+3)
A=3x4+33x4+...+317x4
A=4x(1+33+...+317) chia hết cho 4
2+22+23...+210 chia hết cho 3
= (2+22)+....+(29+210)
=(2.1+2.2)+...+(29.1+29.2)
=2.(1+2)+...+29+(1+2)
=2.3+...+29.3
=3.(2+23+25+27+29)
Vì 3 chia hết cho 3=>3.(2+23+25+27+29) chia hết cho 3
Mà 3.(2+23+25+27+29) chính là 2+22+23...+210
=>2+22+23...+210 chia hết cho 3
Vậy 2+22+23...+210 chia hết cho 3
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
`A =` \(\left(3+3^2+3^3\right).\left(1+3^3+...+3^{96}\right)\)
`A =` \(39.\left(1+3^3+...+3^{96}\right)\)
Mà `39 ⋮ 13`
`=> A ⋮ 13` (đpcm)