K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

cần CM: \(\sqrt{2018}+\sqrt{2016}< \)\(2\sqrt{2017}\)

<=> \(2018+2016+2\sqrt{2018\cdot2016}< \)\(4\cdot17\)

<=>\(\sqrt{2018\cdot2016}< \)\(17\)

<=>\(\sqrt{2017^2-1}\)\(< \sqrt{2017^2}\) (BĐT luôn đúng)

Do đó \(\sqrt{2016}-2\sqrt{2017}+\sqrt{2018}< 0\)

21 tháng 1 2020

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

21 tháng 7 2018

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

23 tháng 6 2017

không thể cm

27 tháng 7 2019

\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}=\frac{2017\sqrt{2017}+2018\sqrt{2018}}{\sqrt{2017}\cdot\sqrt{2018}}\)

\(=\left(\sqrt{2017}+\sqrt{2018}\right)\cdot\frac{2017+2018-\sqrt{2018\cdot2017}}{\sqrt{2017\cdot2018}}\)

Ta thấy \(\frac{2017+2018-\sqrt{2018\cdot2017}}{\sqrt{2018\cdot2017}}=\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}-1\)

Áp dụng ĐBT Cô si thì \(\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}\ge2\Rightarrow\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}-1\ge1\)

\(\Rightarrow\sqrt{2017}+\sqrt{2018} < \frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\)

NV
9 tháng 3 2019

\(A=\left(2018^{2017}+2017^{2017}\right)^{2018}\) ; \(B=\left(2018^{2018}+2017^{2018}\right)^{2017}\)

Ta có:

\(B=\left(2018.2018^{2017}+2017.2017^{2017}\right)^{2017}\)

\(\Rightarrow B< \left(2018.2018^{2017}+2018.2017^{2017}\right)^{2017}\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2018}=A\)

\(\Rightarrow B< A\)

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Ta có:

\(A=2017^{2017}+2019^{2018}=(2017^{2017}+1)+(2019^{2018}-1)\)

Áp dụng các hằng đẳng thức đáng nhớ:

\(2017^{2017}+1=2017^{2017}+1^{2017}=(2017+1)(2017^{2016}-2017^{2015}+....+1)=2018X\)

\(2019^{2018}-1=2019^{2018}-1^{2018}=(2019-1)(2019^{2017}+2019^{2016}+...+1)=2018Y\)

Do đó:

\(A=2018X+2018Y=2018(X+Y)\vdots 2018\)

Ta có đpcm.

25 tháng 4 2018

Lời giải với kiến thức lớp 8:

\(a^{2017}+b^{2017}\le a^{2018}+b^{2018}\)

\(\Leftrightarrow a^{2017}\left(a-1\right)+b^{2017}\left(b-1\right)\ge0\)

\(\Leftrightarrow a^{2017}\left(a-\frac{a+b}{2}\right)+b^{2017}\left(b-\frac{a+b}{2}\right)\ge0\)

\(\Leftrightarrow a^{2017}\cdot\frac{a-b}{2}+b^{2017}\cdot\frac{b-a}{2}\ge0\)

\(\Leftrightarrow\left(a^{2017}-b^{2017}\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^{2016}+a^{2015}b+a^{2014}b^2+...+b^{2016}\right)\ge0\)

Bất đẳng thức cuối đúng với mọi a, b. Do đó bất đẳng thức đã cho là đúng.