K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2   (1)

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3

= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3   (2)

Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3

⇒ A ⋮ 6

13 tháng 10 2023

\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)

\(=3^{n+1}.10+4.2^n.3\)

\(=3^n.6.5+2^n.2.6⋮6\)

\(\Rightarrow A⋮6\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

a: Gọi d=ƯCLN(6n+5;2n+1)

=>6n+5-3(2n+1) chia hết cho d

=>2 chia hết cho d

mà 2n+1 lẻ

nên d=1

=>ĐPCM

b: Gọi d=ƯCLN(14n+3;21n+4)

=>42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

d: Gọi d=ƯCLN(3n+7;n+2)

=>3n+7 chia hết cho d và n+2 chia hết cho d

=>3n+7-3n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

30 tháng 7 2020

a. Gọi d là ƯCLN của  \(\frac{3n-1}{5n-2}\) , ta có :

\(\left(5n-2\right)-\left(3n-1\right)⋮d\)

\(\Rightarrow3\left(5n-2\right)-5\left(3n-1\right)⋮d\)

\(\Rightarrow15n-6-15n-5⋮d\)

\(\Rightarrow1⋮d\)

Vậy A tối giản với mọi n

b làm tương tự

30 tháng 7 2020

a) Gọi ƯCLN(3n - 1;5n - 2) = d

=> \(\hept{\begin{cases}3n-1⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(3n-1\right)⋮d\\3\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}15n-5⋮d\\15n-6⋮d\end{cases}}\Rightarrow\left(15n-5\right)-\left(15n-6\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 3n - 1 ; 5n - 2 là 2 số nguyên tố cùng nhau

=> \(\frac{3n-1}{5n-2}\)là phân số tối giản

b) Gọi ƯCLN(2n + 3 ; 2n - 1) = d

=> \(\hept{\begin{cases}2n+3⋮d\\2n-1⋮d\end{cases}}\Rightarrow2n+3-\left(2n-1\right)⋮d\Rightarrow4⋮d\Rightarrow d\inƯ\left(4\right)\Rightarrow d\in\left\{1;2;4\right\}\)

Vì 2n + 3 ; 2n - 1 là số lẻ với mọi \(n\inℕ^∗\)

=> 2n + 3 ; 2n - 1 không chia hết cho 2 ; 4

=> d = 1

=> 2n + 3 ; 2n - 1 là 2 số nguyên tố cùng nhau

=> B là phân số tối giản

28 tháng 2 2017

Chứng tỏ các phân số sau tối giản với mọi n thuộc N

a,n+3/n+4

Để phân số \(\dfrac{n+3}{n+4}\) tối giản thì [n+3;(n+4)] là hai số nguyên tố cùng nhau thì:

[n+3;(n+4)]=1

Gọi d là ước chung lớn nhất[n+3;(n+4)]

\(\Rightarrow\) [n+3;(n+4)]=d

\(\Rightarrow\) n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d

\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d

\(\Rightarrow\) [n+4;(n+3)]\(⋮\)d\(\Rightarrow\)[n+4-n-3]\(⋮\)d=>-1\(⋮\)d=>d=1

Nên n+4;n+3 là hai số nguyên tố cùng nhau

Vậy \(\dfrac{n+3}{n+4}\) là phân số tối giản


5 tháng 8 2016

mình pt làm câu sau thôi:

đặt UCLN của (2n+1, 3n+1) d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d 

=> 1chia hết cho d và d=1 

5 tháng 8 2016

bài tương tự nha bn

Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?

gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

28 tháng 2 2017

a) Gọi \(d\)là ước chung của \(n+3;n+4\)

\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)

\(\Rightarrow n+3-\left(n+4\right)⋮d\)

\(\Rightarrow n+3-n-4⋮d\)

\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)

Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)