Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 15 . 19 . 37 - 225
Tích của các số có tận cùng là 5 với các số lẻ luôn có tận cùng là 5 .
...5 - 225 = ...0
Số có tận cùng là 0 thì chia hết cho 10 . Vậy hiệu đó là hợp số vì nó có nhiều hơn 2 ước .
b ) 5 .3 . 6 + 7.11.12
Tích của mỗi số hạng đều có số chẵn nên tổng sẽ chẳn .
Chẵn + chẵn = chẵn . Mà số chẵn thì chia hết cho 2 .
Vậy tổng đó là hợp số vì nó có nhiều hơn 2 ước .
n + 36 = n - 1 + 37
Để n+ 36 chia hết cho n-1 thì 37 chia hết cho n-1
=> n-1 thuộc tập cộng trừ 1, cộng trừ 37
kẻ bảng => n = 2; 0; 38; -36
Ta có:
n+36=(n-1)+37
mà n-1 chia hết cho n-1=>37 cũng phải chia hết cho n-1
=>n-1 thuộc Ư(37)={1;37} nên x thuộc{2;38}
Gọi tổng 3 số tự nhiên liên tiếp là : a;a+1;a+2
=> a+(a+1)+(a+2) = 3a + 3 chia hết cho 3
=> đpcm
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
5x + 2 chia hết cho 9 - 2x
=> 2(5x + 2) = 10x + 4 chia hết cho 9 - 2x
=> 10x + 4 + 5(9 - 2x) = 10x + 4 + 45 - 10x = 49 chia hết cho 9 - 2x
=> 9 - 2x thuộc Ư(49) = {1, 7, 49}
=> 2x thuộc {8, 2, -40}
=> x thuộc {1, 4, -20}
Vậy x thuộc {1, 4, -20}
Học tốt nhé!
- Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*)
- Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4.
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N)
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí)
Vậy trường hợp a, b cùng lẻ không xảy ra.
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N).
=> a² + b² = c²
<=> (2m + 1)² + (2n)² = (2p + 1)²
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1
<=> n² = p² + p - m² - m
<=> n² = p(p + 1) - m(m + 1).
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4.
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4.
Vậy abc chia hết cho 4 (**)
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***)
Từ (*), (**), (***), mà 3, 4 đôi một nguyên tố cùng nhau => ab chia hết cho 3.4 hay abc chia hết cho 12. (đpcm)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
3x - 55 + 2x = -10 => 3x + 2x - 55 = -10 => 5x - 55 = -10 => 5x = (-10) + 55 = 45 => x = 45 : 5 = 9
=52011+52012 - 52010
=52010(5+52-1)
=52010 * 29(chia hết cho 9)